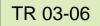


DAIKIN Marine type Container Refrigeration Unit


Service Manual

DAIKIN CONTAINER

LXE10E-1

DAIKIN INDUSTRIES, LTD.

Please read the contents of this manual prior to operation of the unit.

In addition, refer to the manuals listed below:

Parts List

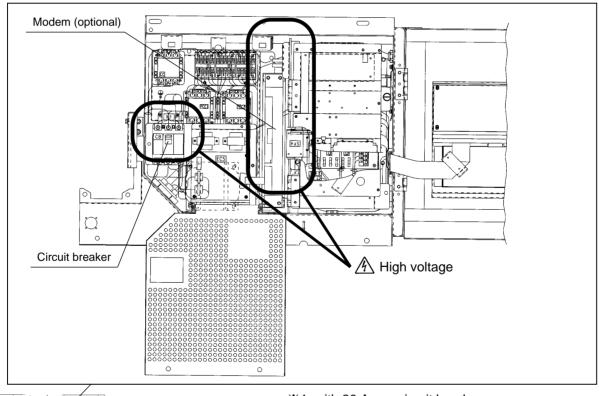
•Operation Manual of Personal Computer Software

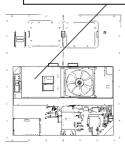
CONTENTS

Safety Precautions
• Danger
• Warning
1. Introduction1-1
1.1 Operation range1-1
1.2 Basic Names of components1-1 1.3 Basic operation of refrigeration unit1-2
1.3.1 Operation preparation1-2
1.3.2 Starting operation1-3
1.3.3 Checking during operation1-4
1.3.4 Procedure after operation1-4 1.3.5 Adjust the ventilation1-5
2. General description2-1
2.1 Main specifications2-1
2.2 Names of components
2.2.1 Outside
2.2.3 Control box
2.3 Set point of functional parts and protection devices2-9
2.4 Operating pressure and running current2-10
2.5 Operation modes and control2-14 2.5.1 Frozen mode2-15
2.5.2 Chilled mode2-17
2.5.3 Defrosting mode
2.5.4 Dehumidification
2.5.5 Common control2-23 3. Electronic Controller3-1
3.1 Function table3-1
3.2 Basic operation of electronic controller3-3
3.2.1 Control panel3-3 3.2.2 Operation mode and control3-5
3.3 Operation procedure
3.3.1 Operation procedure flow chart
3.3.2 Mode operation procedure
1. Current indication mode
3. Battery mode
4. Mode operation
5. LED display light-OFF mode3-15
6. Sensor indication mode3-16 7. Temperature record scroll mode3-19
8. Alarm record scroll mode
3.3.3 Setting flow chart3-24
10. Optional function setting mode3-26
11. Basic function setting mode3-27 12. Optional condition setting mode3-29
13. Input data mode
14. Controller software download mode3-32
3.4 Alarm display and back-up function
3.4.1 Alarm list3-33 3.4.2 Back-up operation at sensor
malfunction
3.5 Battery3-36
3.5.1 Specifications
3.5.2 Function
3.5.4 Battery replacement (Rechargeable battery)3-37
3.6 Information interchange with personal computer3-38
3.6.1 Data logging
3.6.2 Software configuration3-40 3.7 Inspection procedure for the electronic controller3-42
3.8 Controller replacement and initial setting 3-43
3.8.1 Controller replacement
3.8.2 Initial setting & operation procedure3-44
3.9 PTI (Pre-Trip Inspection) and periodic inspection3-45 3.9.1 Inspection item3-46
3.9.2 Automatic PTI (Pre-Trip Inspection)3-49
3.9.2.1 PTI selection mode3-50
3.9.2.2 Short PTI (S.PTI)3-51 3.9.2.3 Full PTI (F.PTI)3-52
3.9.2.3 Full PTI (F.PTI)
3.9.2.5 Manual check (M.CHECK)
3.10 Chartless function3-57

	3.10.1 Chart indication mode	
	3.10.2 P code (Pull down time indication)	3-59
	3.10.3 Chartless code display function	
	3.10.3.1 List of chartless codes 3.10.3.2 H-code	
	3.10.3.3 d-code:	
	3.11 Communication modem	
4.	Service and Maintenance	4-1
	4.1 Maintenance service	4-1
	4.1.1 Collection of refrigerant	
	4.1.2 Gauge manifold 4.1.3 Automatic pump down	
	4.1.4 Refrigerant recovery and charge	
	4.2 Main components and maintenance	4-9
	4.2.1 Scroll compressor	4-9
	4.2.2 Fan and fan motor	4-15
	4.2.3 PT and CT board (EC9756) 4.2.4 Electronic expansion valve	4-16
	4.2.5 Thermostatic expansion valve	4-18
	4.2.6 Suction modulation valve	4-19
	4.2.7 Drier	4-20
	4.2.8 Solenoid valve	4-21
	4.2.9 Discharge pressure regulating valve	4-22
	4.2.10 Check valve 4.2.11 High-pressure switch (HPS)	4-22 4-23
	4.2.12 Low pressure transducer (LPT)	
	4.2.13 High pressure transducer (HPT)	4-24
	4.2.14 Water pressure switch (WPS)	4-24
	4.2.15 Humidity sensor	4-24
	4.2.16 Ventilation port opening degree sens (FA sensor)	
	4.2.17 Air-cooled condenser and evaporator.	
	4.2.18 Water cooled condenser	
	4.2.19 Fusible plug	4-26
	4.2.20 Liquid/moisture indicator	4-26
5	4.2.21 Evacuation and dehydrating	4-27
Э.	5.1 USDA transportation	5-1
	5.1.1 Type of USDA sensor/receptacle	5-1
	5.1.2 Initial setting	5-1
	5.1.3 USDA sensor calibration	5-1
	5.1.4 USDA transportation requirement 5.1.5 USDA report	5-1
6	Troubleshooting	
۰.	6.1 Refrigeration system and electrical system	n6-1
	6.2 Alarm codes on electronic controller	6-5
	6.3 Troubleshooting for automatic PTI (J-code) .	6-10
	6.4 Emergency operation 6.4.1 Emergency operation of controller	6-12
	6.4.2 Short circuit operation of controller	6-13
	6.4.3 Opening adjustment of electronic	
	expansion valve	6-14
	6.4.4 Emergency operation of suction	
	modulating valve	6-15
	6.4.5 Automatic Back up for supply / return temperature sensors	aii 6-16
7.	Appendix	
	7.1 Standard tightening torques for bolts	7-1
	7.2 Standard tightening torques for flare nuts.	7-1
	7.3 Standard tightening torque for stop valve . 7.4 Resistance of motor coil and solenoid valve coil	7-1
	7.5 Standard tightening torque for electronic	17-2
	expansion valve coil (EV coil)	7-2
	7.6 HFC134a, temperature-vapor pressure	
	characteristics table	
	7.7 Temperature sensor characteristics table.	
	7.8 Temperature sensor characteristics table DCHS 7.9 High pressure transducer characteristics table	2/-5
	7.10 Low pressure transducer characteristics table	le.7-5
	7.11 Piping diagram	7-6
	7.12 Pilot lamps	7-7
	7.13 Fuse protection table	7-8
	7.14 Schematic wiring diagram	
	7.15 Stereoscopic wiring diagram	

SAFETY PRECAUTIONS


Always observe the following points before operating or inspecting a unit.

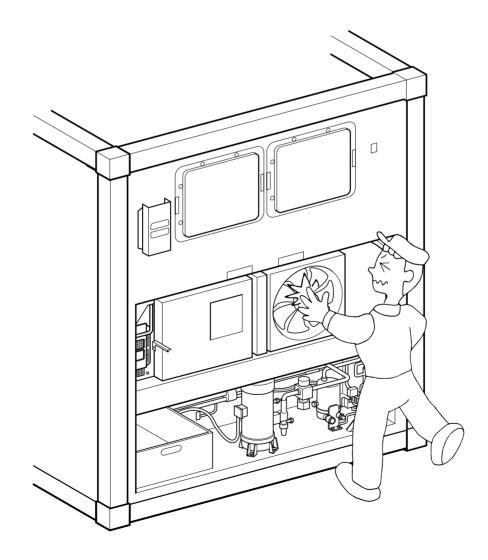


Always turn off the main power supply in the facility (%1)before disconnecting the power plug.

Always turn off the main power supply in the facility (%1) before inspecting the interior of the control box.

* This is important because high voltage remains at the circuit breaker and the optionally provided modem even though the circuit breaker in the control box is turned off.

%1: with 30 Amps circuit breaker

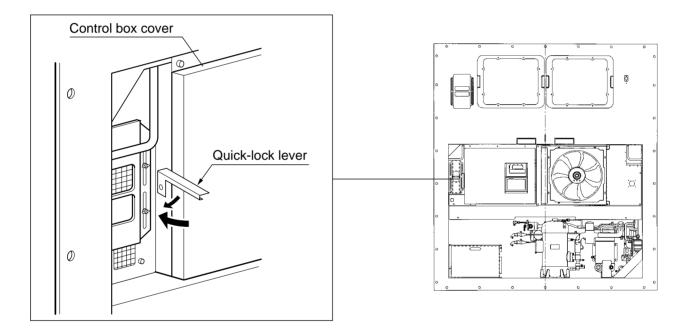


Do not touch the condenser fan while power to the unit is ON.

Before removing the condenser fan cover, turn off the circuit breaker and disconnect the power plug. During air-cooled operation : Condenser fan may start and stop automatically for

the refrigerant high pressure control.

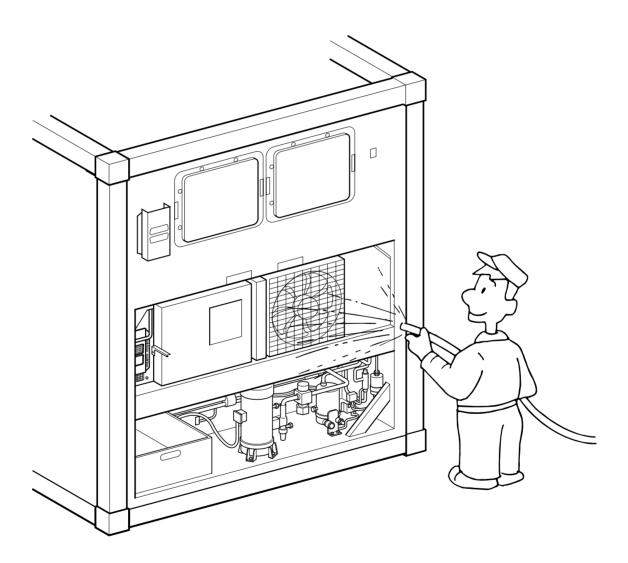
During water-cooled operation: Condenser fan may start and stop automatically for cooling of the control box.



A CAUTION

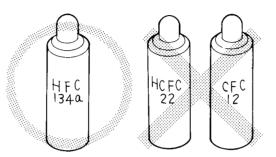
Before starting the unit, run the generator.

Securely close the control box cover.


Otherwise, it will allow water entry.

Wash the refrigeration unit with fresh water at PTI.

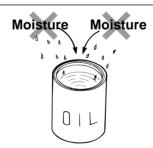
Carefully flush the air-cooled condenser with fresh water to remove the salt that sticks to it.



Refrigerant and refrigerant oil

Be sure to only charge the unit with refrigerant HFC 134a. Never attempt to use any other refrigerant (CFC12, HCF22, etc) with the refrigeration unit.

If any other refrigerant not specified is charged, it may cause problems with the unit.


Use only Daikin specified oil (IDEMITSU, Daphne Hermetic Oil FVC46D) when replacing the refrigerant oil.

If any other refrigerating machine oil not specified is charged, it may cause problems with the unit.

Open the oil can, just before charging the oil, and use all the oil in the can once opened.

Do not leave the can open for 5 hours or longer to avoid moisture entry. Using any refrigerant oil which has absorbed moisture may cause problems with the unit.

Use only exclusive tools for HFC134a. (gauge manifold, charging cylinder, etc) Do not use any tools for CFC12 or HCFC22.

Service ports with exclusive quick joints for HFC134a are provided in the refrigeration unit to avoid improper refrigerant or refrigerant oil from entering into the refrigeration circuit. (Refer to section 4.4.2)

The charging hose and gauge port are not interchangeable with those of previous models using other refrigerants.

CLASS 1 SPECIFIED PRODUCT BY THE HYDROFLUORIC REFRIGERANT RECOVERY LAW

HFC IS USED FOR THIS PRODUCT AS A REFRIGERANT.

- (1) EMISSION OF HYDROFLUORIC SUBSTANCES INTO THE ATMOSPHERE WITHOUT PERMISSION IS PROHIBITED.
- (2) RECOVERY OF HYDROFLUORIC SUBSTANCES IS MANDATORY WHEN SCRAPPING THIS PRODUCT.
- (3) THE KIND OF HYDROFLUORIC SUBSTANCE AND ITS AMOUNT ARE STATED IN THE MANUFACTURER'S LABEL OR THE ADDITIONALLY CHARGED AMOUNT LABEL.

1. Introduction

(2)

(3)

(4)

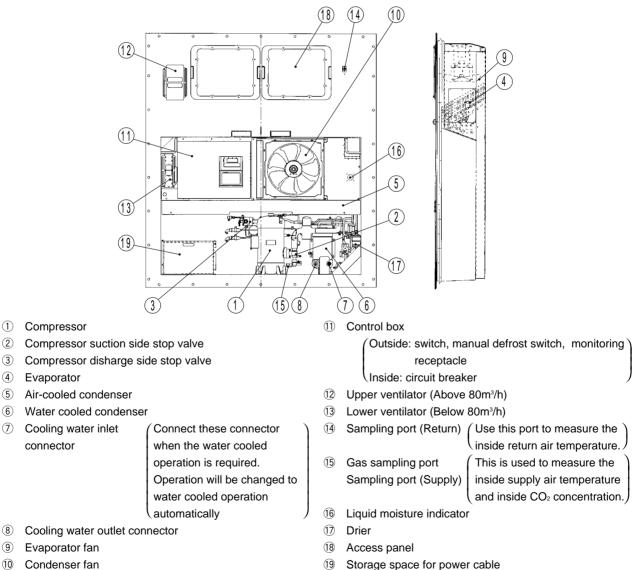
(5)

6

(7)

(8)

(9)


(10)

1.1 OPERATION RANGE

Use the units within the following range.

Item		Operation range	
Ambient temperature range		-30°C to +50°C (-22°F to + 122°F)	
Inside temperature range		-30°C to +30°C (-22°F to + 86°F)	
Cooling water	Temperature	10°C ~ 36°C (50°F ~ 96.8°F)	
Cooling water	Water volume	23 ~ 30ℓ/min.	
Pressure		196 ~ 490kPa (2 ~ 5kg/cm ²)	
Voltage		50Hz: 380V/400V/415V, 60Hz: 440V/460V Voltage fluctuation rate should be within $\pm 10\%$	
Vibration and shock		2G	

1.2 BASIC NAMES OF COMPONENTS

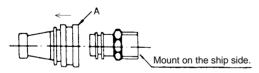
1.3 BASIC OPERATION OF REFRIGERATION UNIT

Operate the unit by the following procedure.

1.3.1 Operation preparation

- (1) Make sure that the compressor discharge and suction side stop valves ①, ② are opened.
 (Refer 1.2 Basic name of components.)
- (2) Connect the cooling water piping to joints.(When the water cooled operation is required.)

Cooling water piping connection (Air and water cooled combination unit)

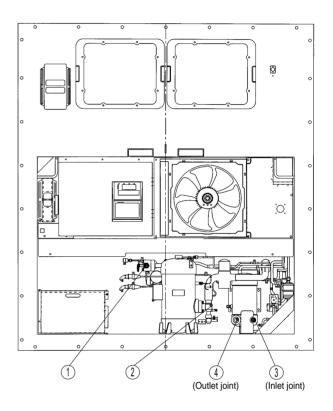

For water-cooled operation, connect the water piping to feed water.

- Connection method
- 1. Connect the inlet joint 3.
- 2. Connect the outlet joint 4.
- Disconnection method
- 1. Disconnect the outlet joint ④.
- 2. Disconnect the inlet joint 3.

Connect the cooling water joint in the following method.

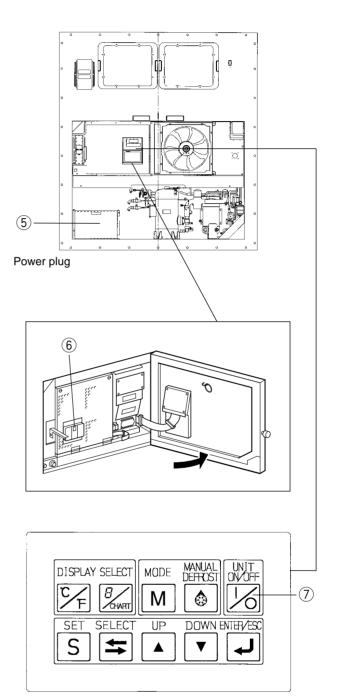
<u>Connection method</u>: Insert a joint on the ship side in the piping joint on the unit side and push it in until you feel a click.

When connecting or disconnecting the joint, be careful not to be subject to cooling water splashes.

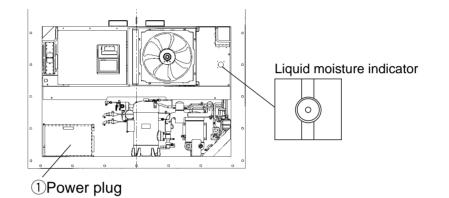


Piping connection method on cooling water outlet side

Disconnection method: Pull the joint on the ship side toward you with Part A of the joint on the female side pushed and held <u>as shown by the arrow</u> in figure above.



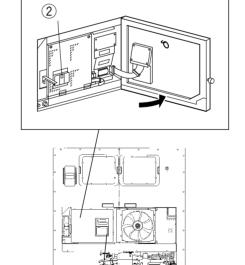
[Note] While in water-cooled operation, do not attempt to touch the condenser fan by hand. (The condenser fan turns ON or OFF to cool the control box.)


1.3.2 Starting operation

- (1) Make sure that power to the unit is on.
- (2) Connect the power plug to the power supply. Insert the plug (5) suited to the power source voltage, and fasten the plug firmly.
- (3) Turn on the main power switch of the power source facility (outside the unit)
- (4) Turn on the circuit breaker 6.
- (5) Close the control box cover fully.
 If it is poorly closed, it will allow water entry.
 Check the contact around the packing, and firmly close the cover. (Refer to the
 " A CAUTION " on page 5.)
- (6) Press the UNIT ON/OFF key $\overline{?}$.

1.3.3 Checking during operation

Checking items(precautions)	Method of check
1. Check the compressor, fan, pipes, etc. for abnormal noise and vibration.	Visual and auditory
2. Check the refrigerant for shortage.	Visual During the chilled mode, the bubbles always appear in the moisture indicator. Do not charge the refrigerant excessively. Overcharging can damage the compressor.
3. Check the refrigerant for moisture inclusion.	Visual The moisture indicator colour; Green: normal Yellow: abnormal.
4. Check operating conditions with the pilot lamps.	Visual



1.3.4 Procedure after operation

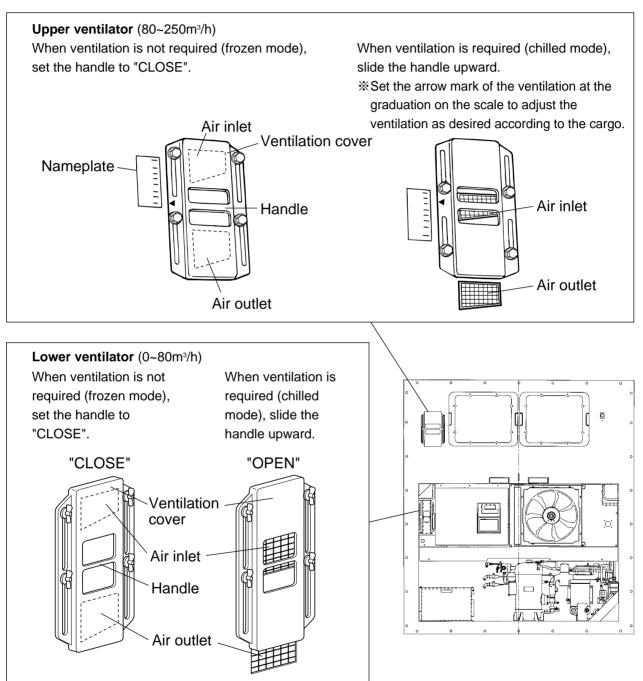
- (1) Turn off the UNIT ON/OFF key ③, and turn off the circuit breaker ②.
- (2) Close the control box cover tightly.

(3) Stow the power cable.

Disconnect the power plug ①, and stow the power cable directing the plug opening downward to prevent sea water or rain water from collecting in the power plug.

S 🖛 🔺 🖬

(3)

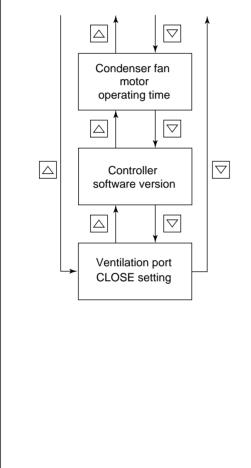

(1)

1.3.5 Adjust the ventilation

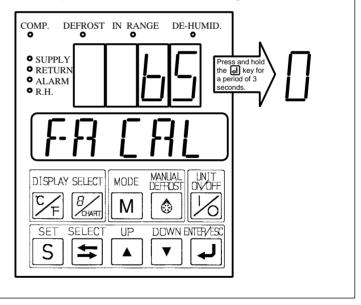
Adjust the opening of the lower or upper ventilator according to the cargo. When the ventilation amount is 80 m³/h or more, use the upper ventilator to adjust the amount. When the amount is not more than 80 m³/h, use the lower ventilator cover for the adjustment.

Keep the ventilation closed during transportation of the frozen cargo.

By pressing the \Rightarrow key on the operation panel, the ventilation amount will be displayed.


※ Caution for lower ventirator opening

Be sure to make the zero-point adjustment of the ventilation cover (if the ventilation amount is not more than 80 m^3/h) at each PTI.

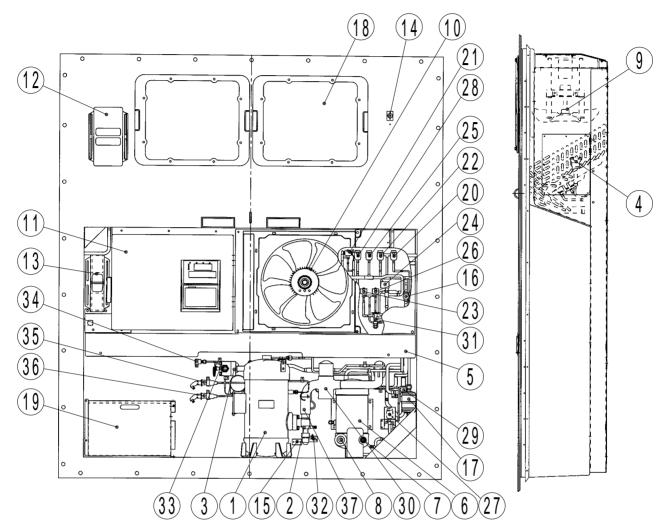

<Zero point adjustment procedure>

While the unit is running, move the ventilation port to a fully closed position manually to set the ventilation port to "closed state" (i.e., CLOSE setting mode), thus making automatic zero-point adjustment of ventilation amount through the difference from that at a position for the ventilation port to start port.

Use the \bigtriangledown or \bigtriangleup key while in manual check selection mode to set the ventilation port to CLOSE setting mode (in which the LCD screen displays "FA CAL". Then, press the \square key, and the current value of sensor sliding amount will be displayed.

Pressing and holding the key for a period of 3 seconds while the sliding amount is displayed will make it possible to reset the sliding amount to "0".

2. General description

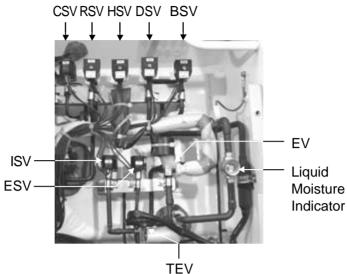

2.1 Main specifications

Model Item		LXE10E-1	
	Controller	DECOSⅢd	
	Power supply	AC 3-phase 380V/400V/415V 50Hz, 440V/460V 60Hz	
	Compressor	Hermetic scroll type (Motor output: 5.5kW)	
	Evaporator	Cross fin coil type	
	Air-cooled condenser	Cross fin coil type	
	Water-cooled condenser	Shell and coil type	
	Evaporator fan	Propeller fan	
	Evaporator fan motor	Three-phase squirrel-cage induction motor	
	Condenser fan	Propeller fan	
	Condenser fan motor	Three-phase squirrel-cage induction motor	
ing	System	Hot-gas defrosting system	
Defrosting	Initiation	Dual timer, on-demand defrost and manual switch	
Def	Termination	Detecting the temperature of evaporator outlet pipe and return air	
	Refrigerant flow control	Electronic expansion valve	
	Capacity control	Capacity control with hot gas bypass and suction modulating valve	
		Circuit breaker, PT/CT board (for over current protection).	
		Compressor thermal protector	
	Protective devices	Condenser fan-motor thermal protector	
	/Safety devices	Evaporator fan-motor thermal protector	
		High-pressure switch, Fusible plug, Fuse (10A, 5A)	
	Refrigerant (charged amount)	R134a : 5.4 (kg)	
R	efrigerant oil (charged amount)	IDEMITSU, Daphne hermetic oil FVC 46D : 2.2(ℓ)	
	Weight	LXE10E-1 : 505(kg)	

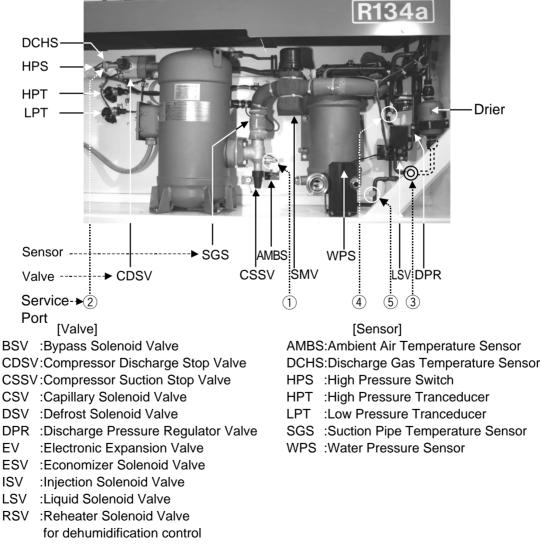
2.2 Names of components

2.2.1 Outside

●LXE10E-1

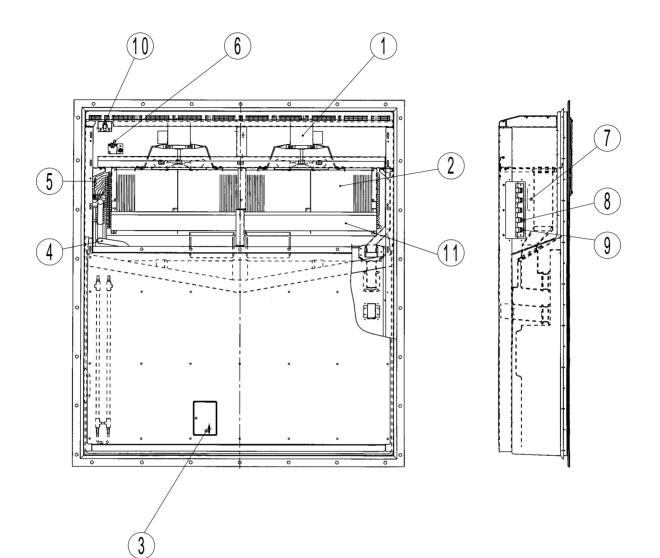


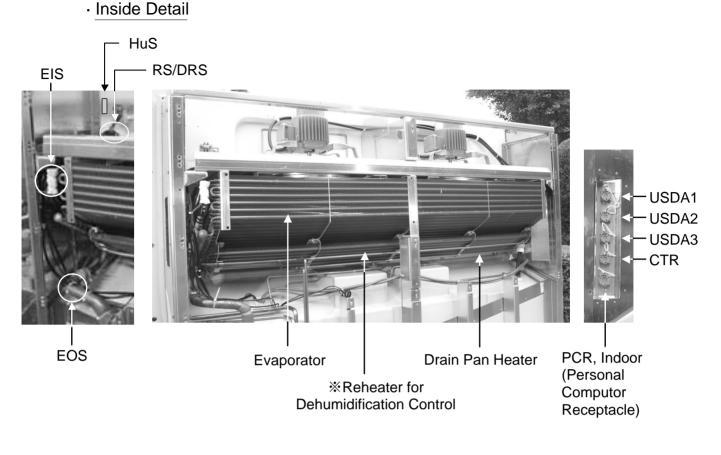
- 1 Compressor
- Compressor suction side stop valve
- 3 Compressor disharge side stop valve
- (4) Evaporator
- (5) Air-cooled condenser
- 6 Water cooled condenser
- O Cooling water inlet connector
- (8) Cooling water outlet connector
- 9 Evaporator fan
- 10 Condenser fan
- 1 Control box
- 12 Upper ventilator (Above 80m³/h)
- 13 Lower ventilator (Below 80m³/h)
- 1 Sampling port (Return)
- 15 Gas sampling port Sampling port (Supply)
- 16 Liquid moisture indicator
- $\textcircled{1} \mathsf{Drier}$
- 18 Access panel
- (19) Storage space for power cable


- 20 Discharge gas by-pass solenoid valve (BSV)
- 2 Capillary solenoid valve (CSV)
- 2 Defrost solenoid valve (DSV)
- 23 Economizer solenoid valve (ESV)
- 24 Electronic expansion valve (EV)
- 25 Hot-gas solenoid valve (HSV)
- 26 Injection solenoid valve (ISV)
- ② Liquid solenoid valve (LSV)
- 28 Reheat coil solenoid valve (RSV)
- 29 Discharge pressure regulating valve (DPR)
- 30 Suction modulating valve (SMV)
- 3 Thermostatic expansion valve (TEV)
- 32 Ambient temperature sensor (AMBS)
- $\ensuremath{\textcircled{33}}$ Discharge pipe temperature sensor (DCHS)
- 3 High pressure switch (HPS)
- 35 High pressure transducer (HPT)
- 36 Low pressure transducer (LPT)
- 37 Compressor suction pipe temperature sensor (SGS)

●LXE10E-1

· Detail of solenoid valves

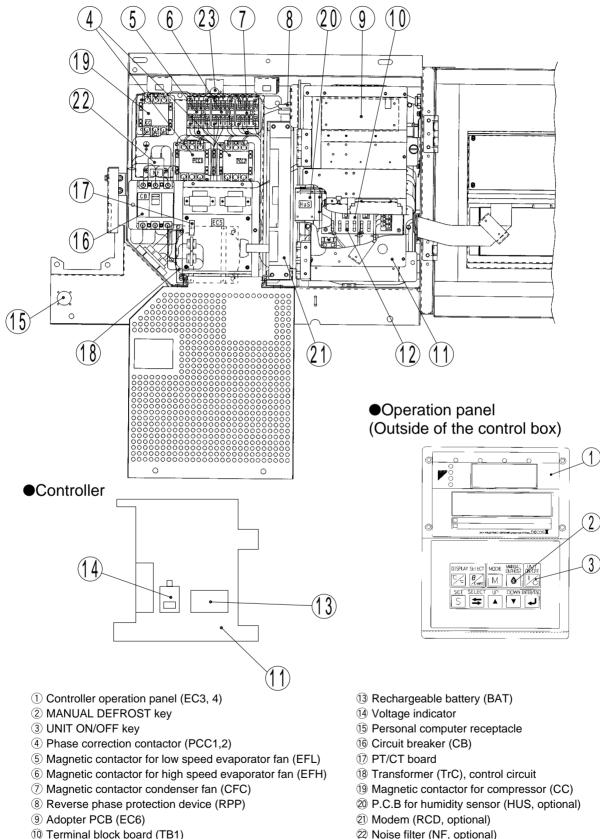

· Detail of compressor and refrigerant control devices


- SMV :Suction Modulation Valve
- TEV :Thermostatic Expansion Valve

2.2.2 Inside

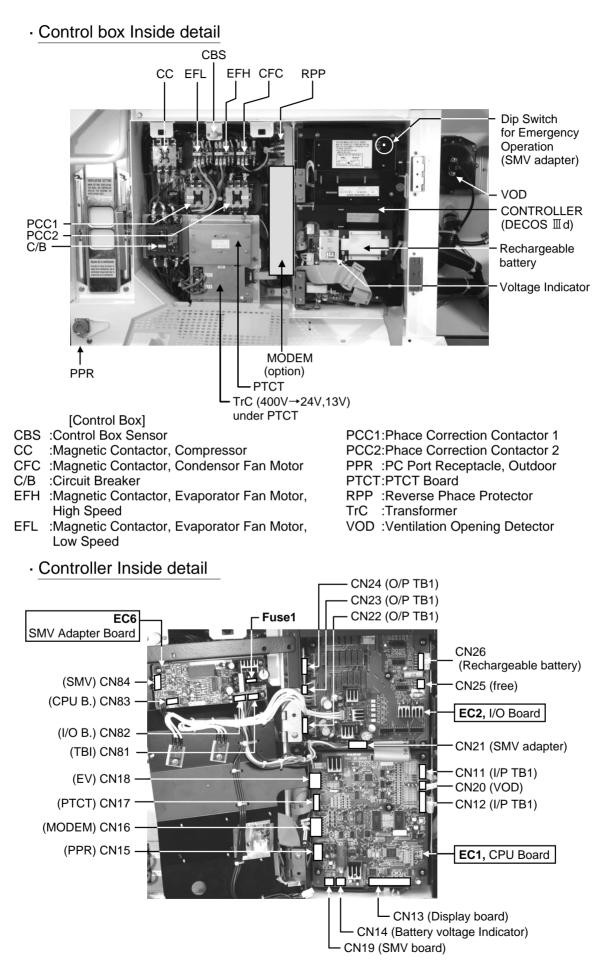
●LXE10E-1

- ① Evaporator fan motor (EFM)
- 2 Evaporator
- ③ Supply air temperature sensor (SS)
- Data recorder supply air temperature sensor (DSS)
- 4 Evaporator outlet pipe temperature sensor (EOS)
- 5 Evaporator inlet pipe temperature sensor (EIS)
- 6 Return air temperature sensor (RS)
- Data recorder return air temperature sensor (DRS, optional)
- ⑦ USDA receptacle
- (8) Cargo temp. receptacles
- 9 P.C. Port receptacles
- 10 Humidity sensor
- 1 Reheat coil



[Sensor]

- CTR :Cargo Temperature Receptacle
- DRS :Return Air Temperature Sensor for Datacorder
- DSS :Supply Air Temperature Sensor for Datacorder
- EIS :Evaporator Inlet Temperature Sensor
- EOS :Evaporator Outlet Temperature Sensor
- HuS :Humidity Sensor
- RS :Return Air Temperature Sensor
- SS :Supply Air Temperature Sensor
- USDA 1:USDA Receptacle 1
- USDA 2:USDA Receptacle 2
- USDA 3:USDA Receptacle 3


2.2.3 Control box

•Inside of the control box

- 1 Controller CPU / IO board (EC1, 2)
- 12 Fuse (Fu1-6)

23 Control box sensor (CBS)

· Detail of terminal Board & Short circuit Connector **Terminal Board Back of Controller** Short circuit connector for emergency operation EC7 SCC1-2 (Red) Rechargeable battery board SCC2 (Blue) SCC1-1 (Blue) HuS Sensor board 51 105C 300V VW 1 - Connector (VOD-CPU Board) - TB2, Terminal board (PPR1-PPR2) **Terminal Board Reverse phase Connection Socket** correction socket for Short Circuit Connector at emergency operation 45 46 CN3 43 44 2 1 40 41 39 37 42 39 ATJ RED 38 40 37 36 38 35 [COOL] BLUE 34 CN2 CN9 35 36 33 32 33 34 31 30 31 32 29 28 29 30 27 25 EMERGENC [HEAT] BLUE CN7 QN10 26 28 27 24 23 21 22 25 26 24 22 23 21 ŝ 20 19 20 18 19 18 17 17 16 15 16 15 13 14 13 14 12 Š 11 12 11 8 10 9 09 6 08 Power Supply $\rightarrow \frac{2}{2}$ 07 4 CN6 5 05 06 2 (24V & 13V) 3 05 04 03 1 01 TB1 **Input Terminal Board** Π Π Π Π Fuse Π Н No.1 to 6 TB2 (250V, 10A) Fu6 Fu5 Fu4 Fu3 Fu2 Fu1 **Output Terminal Board**

2.3 Set point of functional parts and protection devices

		De	evice	e name	Actuation	Set point	Detection method	Symbol
tch	High-pressure switch		OFF	2400kPa (24.47kg/cm ²)	High-pressure switch	HPS		
Pressure switch			ON	1900kPa (19.37kg/cm²)				
sure	Water pressure switch		OFF	98kPa (1.0kg/cm²)	Water pressure switch	WPS		
Pres				ON	39kPa (0.4kg/cm²)			
_		0	Chill	ed mode	ON	+30.0°C to -5.0°C	Set point temperature	EC
					(+86.0°F to –41.0°F)			
	Mode selection	on F	Froz	en mode		–5.1°C to –30.0°C		
						(–41.2°F to –22.0°F)		
	Delay	Fan	1	Change-over for Hi/Lo	ON	10 seconds		
	timer		After defrosting			60 seconds		
		Comp	ressor	At starting		3 seconds		
	Defrosting		tion 5	Short	ON	4 hours ※1		
	timer			_ong		3, 6, 9, 12, 24 and 99 hours(%2)		
				k-up	OFF	90 minutes		
		Ī	n-ra	inge masking		90 minutes		
		0	Dut-	range guard	ON	30 minutes		
ller	Defrosting	terr	nina	ation set point	OFF	30°C (86°F)	Evaporator outlet	EOS
otro		- · ·			Reset		tempertature sensor	
S				15°C (59°F) ※4	Return air temperature	RS, DRS		
nic					sensor			
Electronic controller	High-pressure control for Condenser fan			ol for Condenser fan	OFF	800kPa (8.2kg/cm²) ※6	High-pressure transducer	HPT
Шe	(% Frozen only)			rozen only)	ON	1000kPa (10.2kg/cm²)		
	Condenser fan ON/OFF setting value		OFF	49°C (120.2°F)	Control box sensor	CBS		
			ON	59°C (138.2°F)				
	Discharge gas Pull down		OFF	135°C (275°F)	Discharge gas	DCHS		
				LPT>50kpa	Reset	After 3 minutes elapsed	temperature sensor	
	1.			LPT≦50kpa	OFF	128°C (262°F)		
	set point		Reset	After 3 minutes elapsed				
	Overcurrent protection set point (Cutout)			ction set point (Cutout)	OFF	26.0A	PT/CT board	CT2
			Reset	After 3 minutes elapsed				
	Current control				Control	50Hz : 16.1A	PT/CT board	CT1
					60Hz : 17.4A			
	High pressure control		Control	2300 to 2350 kPa	High pressure sensor	HPT		
				(23.5 to 24.0 kg/cm ²)				
rent	Circuit bre	Circuit breaker		OFF	30A		СВ	
Current	Fuse				OFF	5A, 10A ※5		Fu
	Evaporato	r far	n mo	otor thermal protector	OFF	132°C (270°F)		
Motor	Condenser fan motor thermal protector		otor thermal protector	OFF	135°C (275°F)		MTP	
2	Compressor motor thermal protector		OFF	140°C (284°F)		CTP		
-	Fusible plu	ıg			_	95~100°C		

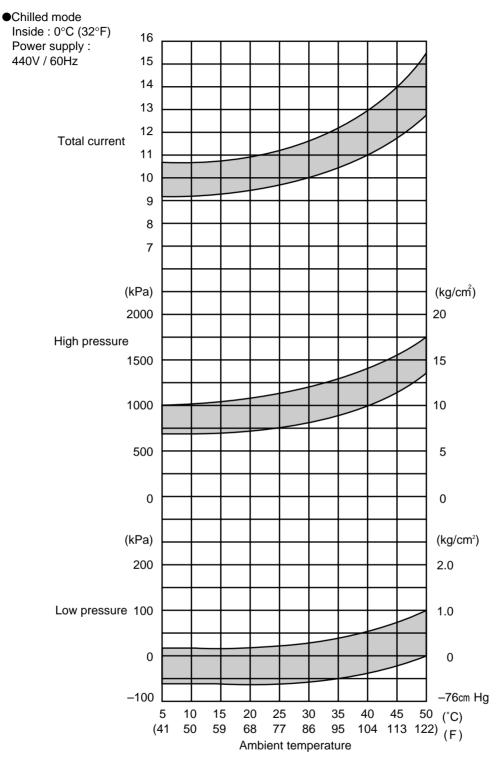
(%1) When Return air (RS) is lower than -20°C, defrost starts every 6 hours.

(%2) When "99" hours is selected, refer to on demand defrost in 2.5.3.

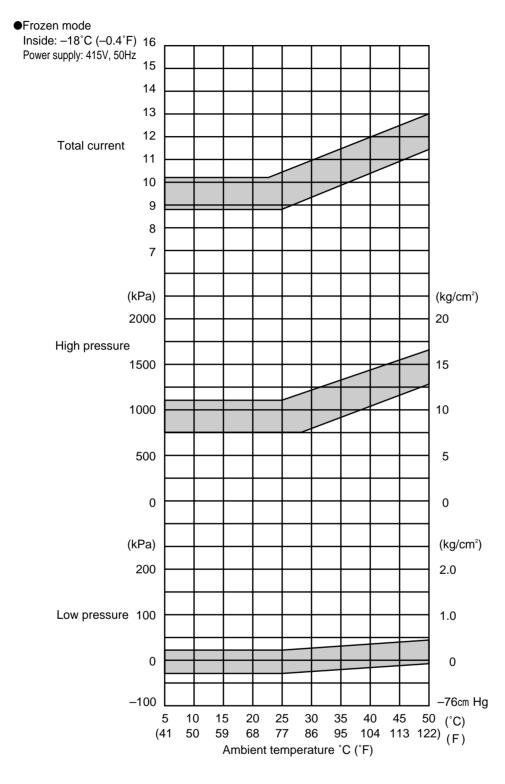
(3) When Inside set point is -20.0 °C or Lower, In-range masking is 120min.

^(%4) If defrost is initiated when inside temperature is out rangle area. (= In-range LED is not light), this condition is added to finish defrost. Refer to "Defrosting termination" in 2.5.3.

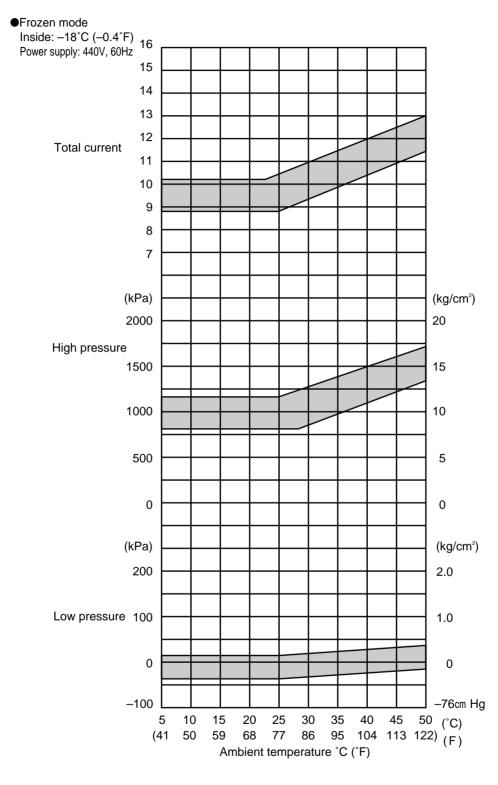
^(%5) Refer to "Fuse Protection table" in 7.13.


^(%6) When dehumidification is ON in dehumidification mode, the setting figure may change between 900~2100kPa automatically (Refer to "High Pressure Control" Page 2-24).

2.4 Operating pressure and running current


•Fan motor current

Item	Amperage A
Condenser fan motor running current	1.3 (415VAC)
Evaporator fan motor running current (2 motors)	2.9 (415VAC) Hi speed


•Fan motor current

Item	Amperage A
Condenser fan motor	1.3 (440VAC)
running current	1.3 (440VAC)
Evaporator fan motor	2.9 (440VAC)
running current (2 motors)	Hi speed

Fan motor current

Item	Amperage A
Condenser fan motor	1.2 (415)(AC)
running current	1.3 (415VAC)
Evaporator fan motor	0.8 (415VAC)
running current (2 motors)	Low speed

Fan motor current

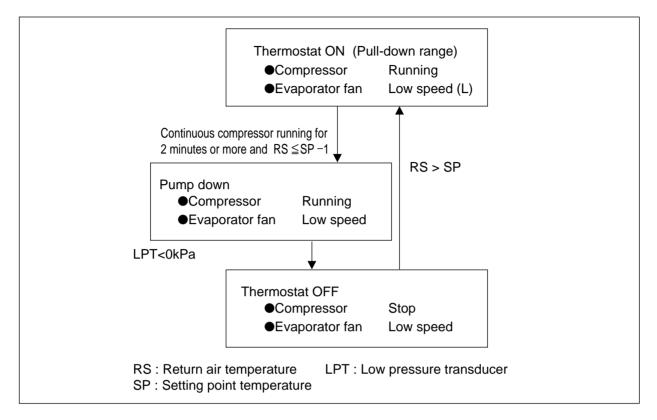
Item	Amperage A
Condenser fan motor running current	1.3 (440VAC)
Evaporator fan motor	0.8 (440VAC)
running current (2 motors)	Low speed

2.5 OPERATION MODES AND CONTROL

There are two main types of operation modes: the cargo cooling control mode and the unit inspection mode.

The cargo cooling control mode is explained in this section.

% For the unit inspection mode, refer to section 3.9.


The relationship between the operation mode and setting temperature is as follows.

Operation mode	Setting temperature	Control sensor	Operation description	
	–5.1°C to –30.0°C	Return air		
Frozen mode	(+22.8°F to -22.0°F)	temperature sensor	Compressor ON/OFF control	
	+30.0°C to -5.0°C	Supply air	Capacity control operation	
Chilled mode	(+86°F to +23°F)	temperature sensor	with suction modulating valve	
		tomporatore concer	and hot-gas bypass control	
Defection			Hot-gas defrosting with	
Defrosting mode	_	_	refrigerant metering control	

*For details, refer to section 3.1 to 3.4.

2.5.1 Frozen mode

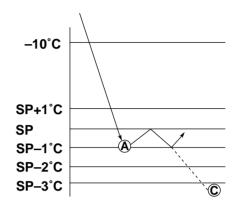
Control state transition and common control

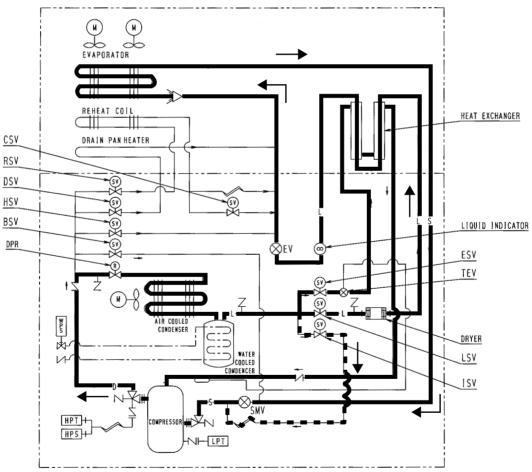
Operation of magnetic contactor and solenoid valve

Component name			Thermostat ON	Pump down	Thermostat OFF
0 L	Compressor	CC	ON	ON	OFF
Magnetic contactor	Evaporator fan. High speed	EFH	OFF	OFF	OFF
1ag ont:	Evaporator fan. Low speed	EFL	ON	ON	ON
≥ŏ	Condenser fan	CF	ON / OFF %1	ON / OFF%1	OFF
	Liquid solenoid valve	LSV	ON	OFF	OFF
<pre></pre>	Economizer solenoid valve	ESV	ON(OFF%3)	ON(OFF※3)	OFF
valve	Injection solenoid valve	ISV	OFF(ON%2)	OFF(ON※2)	OFF
Solenoid	Hot-gas solenoid valve	HSV	OFF	OFF	OFF
len	Defrost solenoid valve	DSV	OFF	OFF	OFF
So	Discharge gas by-pass solenoid valve	BSV	OFF	OFF	OFF
	Capillary solenoid valve	CSV	OFF	OFF	OFF
	Suction modulating valve	100%			
	Electronic expansion valve	10 to 100%			

Note) %1: High pressure control

*2: Injection control (Refer to Page 2-25)

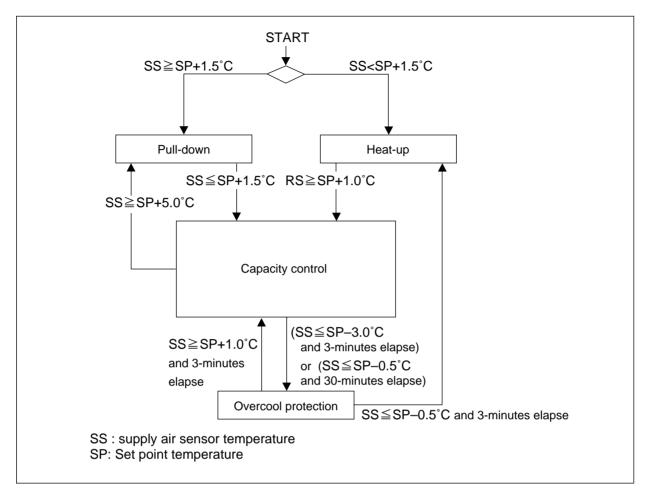

*3: Economizer control (Refer to Page 2-26)


(1) Set point temperature and control sensor

When the set point temperature (referred to as SP hereafter) is $-5.1^{\circ}C(+22.8^{\circ}F)$ or lower, the compressor is operated ON and OFF, in response to return air temperature.

- (2) Control
 - (1)When the control temperature reaches SP–1.0°C (point A), the compressor and condenser fan are turned off after the liquid solenoid valve has been de-energized and the pump down operation has been completed.

②When the control temperature exceeds SP, the compressor, liquid solenoid valve and condenser fan are turned on. However, the compressor runs for at least 2 minutes every time once it is turned on. Even if the control temperature becomes SP or lower (point C) within 2 minutes after the compressor is turned on, the compressor, condenser fan and liquid solenoid valve are not turned off. (2 minutes compressor forced operation)



FROZEN (Return air < 5°C)

EV:Elec.Exp.Valve LSV:Liquid Solenoid Valve DSV:Defrost Solenoid Valve ESV:Economizer Solenoid Valve DPR:Discharge pressure regulator SMV:Suction Modulation Valve WPS:Water pressure switch HSV:Hot Gas Solenoid Valve ISV:Injection Solenoid Valve BSV:Discharge gas Bypass Solenoid Valve LPT:Low Pressure Transducer HPT:High Pressure Transducer HPS:High Pressure Switch. CSV:Capillary solenoid valve.

2.5.2 Chilled mode

Control state transition and common control

Operation of magnetic conductor and solenoid valve

Component name			Pull-down	Capacity control	Heat-up	Overcool protection
Magnetic contactor	Compressor	CC	ON	ON	ON	OFF
	Evaporator fan. High speed	EFH	ON	ON	ON	ON
	Evaporator fan. Low speed	EFL	OFF	OFF	OFF	OFF
	Condenser fan	CF	ON / OFF %1	ON/OFF%4	ON/OFF%1	OFF
Solenoid valve	Liquid solenoid valve	LSV	ON	ON	OFF	OFF
	Economizer solenoid valve	ESV	ON / OFF %5	OFF	OFF	OFF
	Injection solenoid valve	ISV	ON/OFF%2	ON/OFF%4	ON/OFF%3	OFF
	Hot-gas solenoid valve	HSV	OFF	ON/OFF%4	ON	OFF
	Defrost solenoid valve	DSV	OFF	ON/OFF%4	ON	OFF
	Discharge gas by-pass solenoid valve	BSV	OFF	ON/OFF%4	OFF	OFF
	Capillary solenoid valve	CSV	OFF	OFF	OFF	OFF
Suction, modulating valve SMV		SMV	12 to 100%※1	3 to 100%	100%	100%
Electronic expansion valve EV		EV	10 to 100%	10 to 100%	0%	50%

Note) %1: High pressure control %2: Discharge gas temperature control

%3: Charge control

%4: Capacity control and hot gas by-pass %5: Economizer control

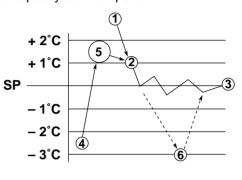
(1) Set point temperature and control sensor

\odot Chilled operation

When the set point temperature is -5.0° C (-41° F) or higher, the suction modulating valve (SMV) is controlled sensing the supply air temperature in order to adjust the cooling capacity.

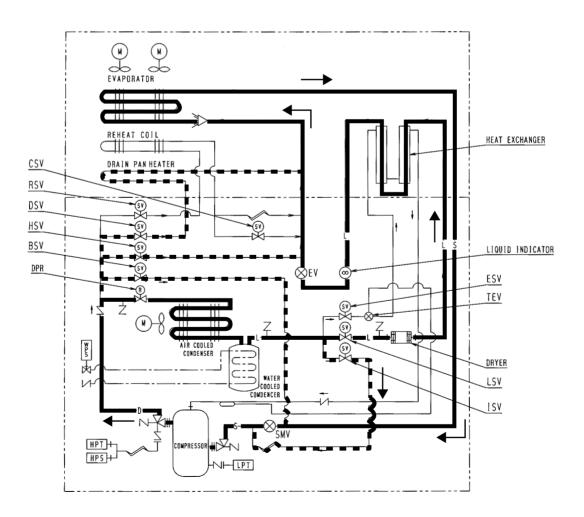
(2) Control

(a) Pull-down operation

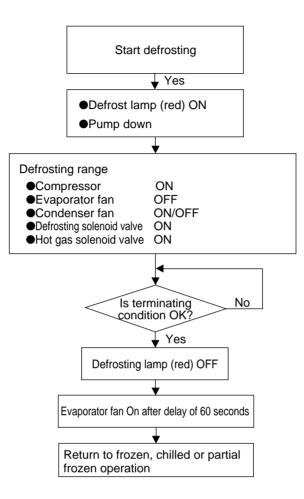

Pull-down operation is carried out with fully opened suction modulating valve when the control temperature is higher than the set point temperature for 1.5°C or more (point ①).

(b) Capacity control operation When the control temperature reaches the point 2, the in-range lamp is turned on. At the same time, the suction modulating valve is activated to conduct the capacity control operation.

The control temperature converges to the set point temperature (point ③) while repeats temperature increasing and decreasing. During capacity control, hot gas by-pass (HSV, DSV, BSV)


and liquid injection (ISV) are conducted in order to maintain the optimum operation condition of refrigerant system.

(c) Heat-up operation
 When the control temperature is lower than [set point temperature +1.5°C] (point ④), the heat-up operation using hot gas is conducted in order to raise the return air temperature to the [set temperature +1.5°C] (point ⑤).



(d) Overcool protection operation

Although the unit's operation is in a stable state, if the control temperature lowers below set point temp $-3^{\circ}C$ (point 6), the compressor stops and only the evaporator fan continues to operate.

2.5.3 Defrosting mode

Operation of magnetic contactor and solenoid valve

Component name			Pump down	Defrosting
Magnetic contactor	Compressor	CC	ON	ON
	Evaporator fan. High speed	EFH	ON/OFF%3	OFF
	Evaporator fan. Low speed	EFL	UN/OFF %3	
	Condenser fan CF ON/OF		ON/OFF %1	ON/OFF%1
	Liquid solenoid valve	LSV	OFF	OFF
a l	Economizer solenoid valve	ESV	ON/OFF %4	OFF
alve	Injection solenoid valve	ISV	OFF (ON※5)	ON/OFF%2
Solenoid valve	Hot-gas solenoid valve	HSV	OFF	ON
ious	Defrost solenoid valve	DSV	OFF	ON
Sole	Discharge gas by-pass solenoid valve	BSV	OFF	OFF
	Reheat solenoid valve	RSV	OFF	OFF(ON%6)
	Capillary solenoid valve	CSV	OFF	OFF
Suction modulating valve		SMV	100%	100%
	Electronic expansion valve	EV	10 to 100%	5%

Note) %1: Pressure control

%2: Charging control

%3: Frozen mode ... EFL ON, Chilled mode ... EFH ON

%4: Economizer control

%5: Discharge gas temperature control

%6: EOS>15°C

Defrosting operation

(1) Defrosting system

A hot-gas defrost system is adopted in the units; i.e. the high temperature and high pressure refrigerant (hot gas) from the compressor is sent to the evaporator and drain pan for defrosting. Since the evaporator is heated directly by the hot gas (refrigerant), defrosting can be performed effectively.

(2) Defrosting initiation

Defrosting is initiated by the timer or the manual defrost key.

However, defrosting is not initiated when frosting on the evaporator can not be detected.

- Evaporator inlet temperature : 5°C or higher
- Evaporator outlet temperature : 20°C or higher

①Initiation by timer (Timer is set at the electronic controller, refer to section 3.3.2 for its operating method.)

Type of timer	Defrosting interval set	Function	
Long timor	3, 6, 9, 12, 24 and 99 ^{*1} hours are	Regardless of the control temperature, defrosting	
Long timer	selectable.	is initiated according to the selected interval.	
	4 hours ^{**2}	Defrosting is initiated every 4 hours until the control	
Chart times		temperature comes within the in-range after pull-down.	
Short timer		When the temperature is in-range, defrosting timer	
		will change into the selected long timer.	
		After the control temperature comes within	
Out-range timer	30 minutes	in-range once, defrosting will be started 30 minutes later if	
		the control temperature rises out of the in-range.	

%1. Refer to "(3) On-demand defrost"

%2. 6 hours when the control temperature is –20°C or below.

②Starting by MANUAL DEFROST key (on the operation panel sheet key) Press the MANUAL DEFROST key, then press the ENTER/ESC key while indicate "ON" on the LED display. The manual defrosting operation starts.

③Initiation by frost detection

If the suction air temperature does not drop at the speed of 0.2° C/1hr during frozen pull-down operation, defrosting will be initiated because it is judged that frost is formed on the evaporator. However, if the suction temperature is -20° C or lower, defrosting will not be initiated. (activated)

(3) On demand defrost

When "99" in long timer is selected, defrosting is activated upon the condition of frost on evaporator coil. This function is only for Frozen setting (SP < -10.1 deg C). and starting with 12 hours. (If this function is selected for chilled setting, defrost initiates every 6 hours automatically.)

Procedure:

Step 1: After defrost, the controller records compressor running time for 1st 1 hour. (T1)

Step 2: When 12 hours passed after defrost, controller records compressor running time for last 1 hour (T2). And the controller check whether the below condition is satisfied.

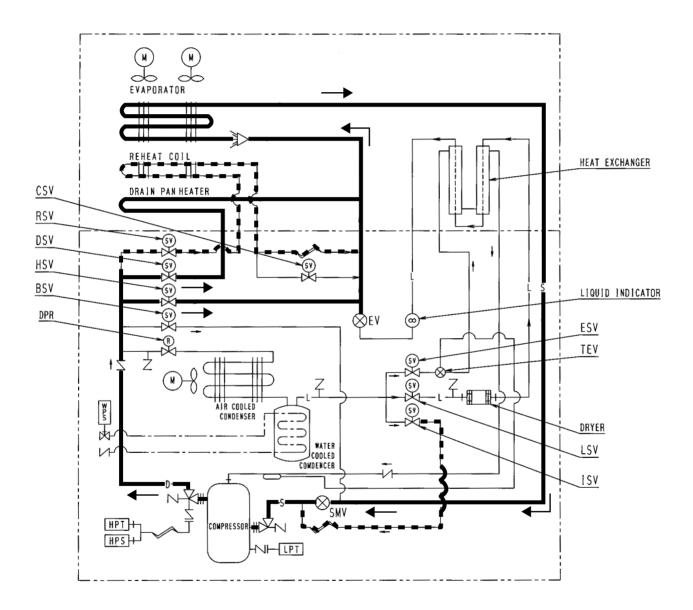
T2 > T1×1.15

Step 3: If the above condition is satisfied, defrost is activated.

If above condition is not satisfied, defrost is postponed another one hour.

After counting up 13 hours, then repeat "Step 2".

Defrost will be postponed every one hour until the above condition (Step 2) is satisfied. (Max. 24 hours)


(4) Defrosting termination

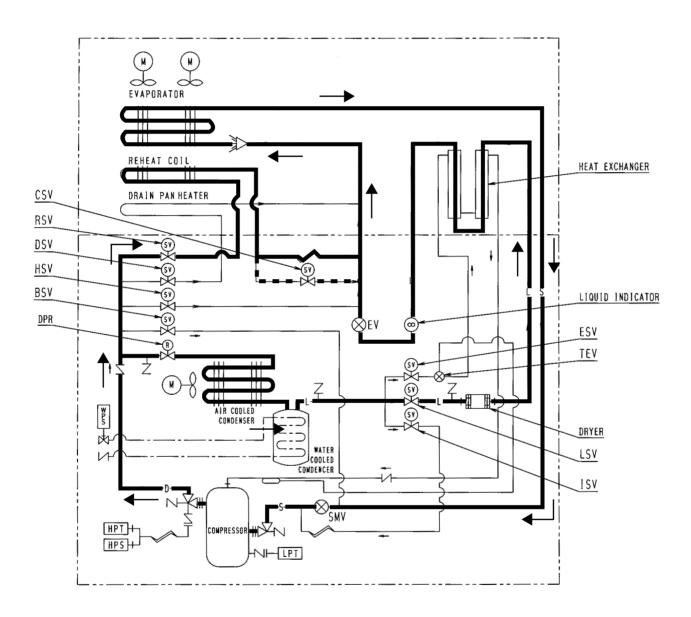
Defrosting will be terminated when any one of the following three conditions is satisfied. (1) The below figure is satisfied during defrost.

Status before defrost	Termination		
INRANGE	EOS≧30.0°C		
OUTRANGE	EOS≧30.0°C & RS/DRS≧15°C		

290 minutes have elapsed.

(3) Any one of protective devices is activated.

2.5.4 Dehumidification


*If reheat coil and humidity sensor (Optional) is equipped:

The unit have dehumidification control by a reheat coil, which is under the evaporator coil. To execute dehumidification, controller setting is required. (Refer to Page 3-12)

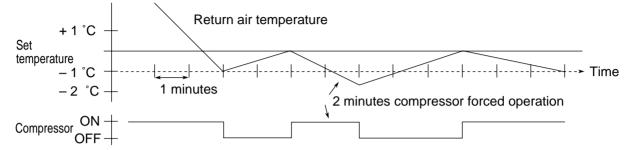
In dehumidification, the Reheat Solenoid Valve (RSV)/Capillary Solenoid Valve (CSV) opens to give high pressurized refrigerant to reheat coil. The "DEHUMID" LED lamp will light up.

The following setting can be made:

1) Dehumidification range: 30%RH-95%RH

2.5.5 Common control

The following are controlled in different operation modes. (For the details, refer to the following pages.)


	Control nome	Control content		Operation n	
	Control name			Chilled	Defrost
Α	Compressor ON/OFF control	The compressor is operated on and off to	0		
$\mathbf{\gamma}$		adjust the inside temperature.			
в	Starting control	\cdot At the start of the operation with low ambient			
	Starting control	temperature, an oil temperature raising control is executed.		\cap	
		\cdot When a protection device activates at the operation		0	
		start, a high pressure/current control is executed.			
С	Evenerator for around control	The evaporator fan is switched to the high or low		(
	Evaporator fan speed control	speed according to the set point temperature.		0	
		In order to keep the superheat of the evaporator			
D	Superheat control	optimum, the opening of the electronic expansion	0		
		valve is controlled.			
-	Llich are course control	In order to keep the high pressure optimum, the			
E	High-pressure control	opening of the electronic expansion valve is controlled.	0	0	
F	Injection	In order to prevent the refrigerant oil from			
		deteriorating, the injection solenoid valve control or	0	0	
		electronic expansion valve control is carried out.			
		When the control temperature is within SP ±2°C,			
G	In-range control	the in-range lamp is turned on.	0	0	
	1	After defrosting initiation, the in-range lamp		(
Η	In-range masking control	is kept on for 90 minutes.		0	
		The circulating flow rate of refrigerant is proportionally			
I	Capacity control	controlled with suction modulating valve to keep the		0	
		control temperature variation within ±0.5°C.			
		These functions control the heating capacity		(
J	Charging and releasing control	for defrosting and heating operation.		0	
	D	The liquid refrigerant is collected into the liquid receiver			
K	Pump down control	(water cooled condenser).	0	0	0
	E	The economizer circuit is controlled to enhance		0	
L	Economizer control	cooling capacity.	0	0	
	Condenser fan control in	The condenser fan is controlled to prevent the	0	\bigcirc	
M	water-cooled operation	temperature rise in the control box.		0	

Common control

A : Compressor ON/OFF control

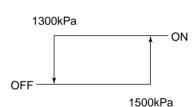
When the control temperature reaches the [set temperature -1.0° C] or lower, the compressor is stopped. When the control temperature rises and becomes higher than the [set point temperature], the compressor runs again.

When the compressor starts running it is forcibly run for 2 minutes. (2 minutes compressor forced operation) in order to prevent the compressor from deterioration due to shortage of lubricant.

B : Starting control

 $^{\odot}$ Control when protective device activated

When the high pressure rapidly rises on starting or when the starting current is overcurrent, the compressor automatically stops and starts to suppress high pressure and starting current.


• Temperature control of refrigerant oil

When ambient temperature is low, the temperature refrigerant oil for compressor is also low and the viscosity of the oil may be high.

On starting the unit, by-pass discharge gas to suction side of the compressor by opening the solenoid valve (BSV) to raise the oil temperature rapidly ensuring a stable feed of oil.

In order to control the oil temperature of refrigerating machine or in the event the high pressure is low, operate the compressor with the condenser fan stopped. If the high pressure reaches 1500 kPa or more, the fan will restart to operate.

The temperature control for refrigerant oil should be executed not with power ON/OFF in normal operation but with power ON under low ambient temperature.

An oil temperature raising control can be executed when all of the following conditions are met.

- The time turning power supply ON
- Ambient temperature $\leq 10^{\circ}C$
- (Discharge gas temperature ambient temperature) \leq 4°C

C : Evaporator fan speed control

The speed of the evaporator fan is switched in accordance with operation modes. A delay time of 10 sec. is provided to switch the high speed to low speed and vice versa.

Chilled mode	: High speed
Partial frozen mode	: High speed
Frozen mode	: Low speed

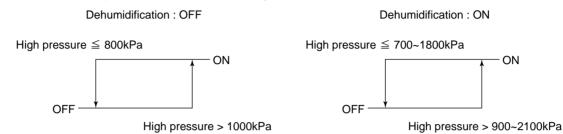
D : Superheat control

The evaporator superheat is adjusted to be optimum by controlling the opening of the electronic expansion valve, based on the evaporator inlet and outlet refrigerant temperature, and the compressor suction gas temperature.

E : High-pressure control

• By suction modulating valve

When the ambient temperature is high during the air-cooled or water-cooled operation, the condensing pressure (high pressure) will increase, and the high pressure switch may be activated.


In order to prevent this situation, the high pressure is controlled to be 2350kPa or lower by adjusting the opening of the suction modulating valve.

• By condenser fan

When the ambient temperature is low during the air-cooled operation, the condenser pressure (high pressure) will decrease. Accordingly, the low pressure will decrease.

In order to prevent this situation, when the high pressure becomes set point or lower, the condenser fan stops to prevent the high pressure from excess dropping.

When the high pressure becomes set point or higher afterwards the operation will be restarted. This control varies upon dehumidification setting.

F : Injection control

In order to decrease the discharge gas temperature, inject liquid refrigerant into the suction pipe.

• During normal compressor operation

The injection solenoid valve will be turned on or off to control the discharge gas temperature lower than set point.

The control is conducted properly by using detected discharge gas temperature and inside temperature.

	Frozen, chilled (pull-down)		Chilled,
	RS≦0°C RS>0°C		capacity control
ISV ON	120°C	128°C	113°C
ISV OFF	103°C	118°C	108°C

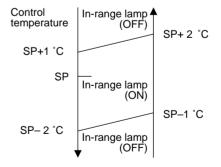
Discharge gas temperature (DCHS) set value

Defrosting / Heat-up operation

Control the injection ON/OFF with charge control. For details, see the section of "charge control" on page 2-20.

G : In-range control

In order to observe at a glance whether the refrigeration unit properly controls the inside temperature or not, the orange lamp on the display panel will light up when the control temperature is near the set point temperature (SP).


H : In-range masking control

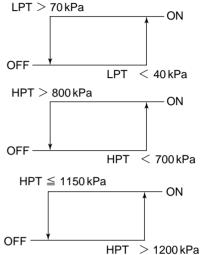
If the inside temperature is within the in-range when

defrosting is started, the in-range lamp will be kept turned on

forcibly for certain period as below regardless of the inside temperature thereafter. This will avoid misunderstanding that there is a problem as the control temperature temporarily rises during defrosting.

Setpoint ≧ –20.0°C	90 minutes
Setpoint ≦ –20.1°C	120 minutes

I : Capacity control


In the chilled mode operation, adjusting cooling capacity makes the supply air temperature stable at the set point temperature (SP).

The capacity control is executed by adjusting the opening of suction modulating valve (SMV) between 3 to 100 %.

J : Charge and release control

Charge control or release control is executed to maintain the heating capacity optimum in defrosting and heating operation.

- Charge control
- (1) The suction pressure (LPT) is detected and the injection solenoid valve (ISV) is turned on, then, liquid refrigerant is charged into the suction pipe.
- (2) The discharge pressure (HPT) is detected and the injection solenoid valve (ISV) is turned on, then the liquid refrigerant is charged into the suction piping.

Release control

The discharge pressure (HPT) is detected and the condenser fan (CFM) is turned on, then, the refrigerant is released into the condenser.

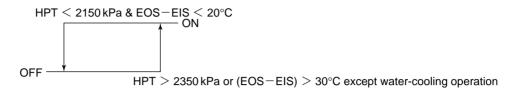
K : Pump down stop

Before the thermostat turns OFF and at the start of defrosting, close liquid solenoid valve (LSV) to conduct pump down operation and recover refrigerant in the receiver. When the low pressure reaches –50kPa or lower, the pump down is terminated.

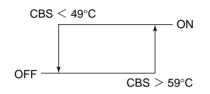
L : Economizer control

The economizer circuit for which the intermittent injection to scroll compressor and the refrigerant heat exchanger are combined, is adopted in the unit.

The economizer circuit enables the liquid refrigerant to have wide range of subcooling resulting in a significant increase of cooling capacity.


 Economizer solenoid valve (ESV) control Frozen mode: ON with return air temperature (RS) of 5°C or lower Chilled & partial frozen mode: ON with return air temperature (RS) of 5°C or lower during pull-down operation

During capacity control, the control does not turn ON.


M : Condenser fan control in water-cooled operation

This refrigeration unit is functional either in air-cooled operation or in water-cooled operation. The selection of air-cooled operation and water-cooled operation is automatically made through the water pressure switch. In other words, when cooling water flows in the water cooled condenser to apply water pressure to the inlet of the condenser, a contact in the water pressure switch will open to stop the condenser fan motor, thus switching the unit to water-cooled operation. By contrast, if feeding water stops in water-cooled operation, a contact in the water pressure switch will be closed to run the condenser fan motor, thus switching the unit to air-cooled operation.

*1 If the shortage of cooling water is caused in water-cooled operation, the condensing pressure will increase, thus activating the high pressure switch. In order to prevent this event, operate the condenser fan so that the condensing pressure will not increase in excess of a high-pressure (HPT) set point. When the high pressure falls below the set point, the condenser fan will stop running.

%2 If ambient temperature is high, a temperature in the control box will increase. If this temperature exceeds a value set with the control box thermostat (CBS), the condenser fan will start running to cool the control box.

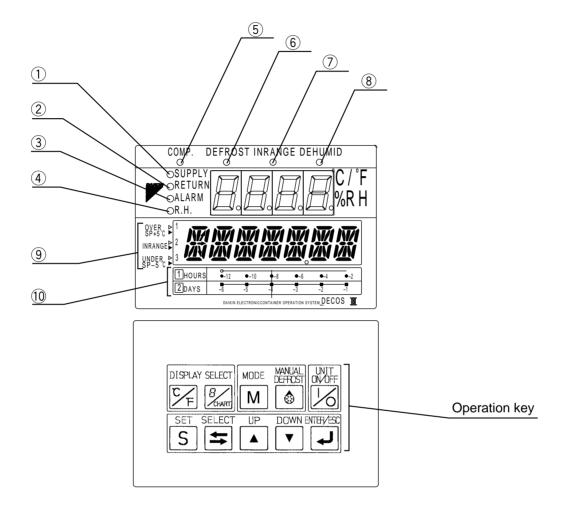
Even in water-cooled operation, there may be cases where the condenser fan operates.

3. ELECTRONIC CONTROLLER

3.1 Function table

●DECOS III d (Daikin Electronic Controller Operation System)

(Note) [PC]: Functions using personal computer


No.	Function division	Function	DECOSⅢd
1	Control function	Temperature control	
		Defrosting control	
		Humidity control	Optional
2	Initial setting	With/without optional equipment (USDA, humidity) and horse power selection	· ·
		Chartless function setting	1
3	Setting	Temperature	✓
	Setting	Defrosting interval	✓ ✓
		Humidity	✓ ✓
		• [PC] Header information set of data logger	
4	Indication	Operating mode (compressor running, defrosting,	
-	(Display panel)	in-range temperature, dehumidifying)	v
	(Biopidy pariol)	Alarm	1
		Return air temperature/set point temperature	1
		Supply air temperature/set point temperature	1
		Defrosting interval	1
		Inside humidity/set point humidity	Optional
		Ambient temperature	· 🗸 🛛
		High pressure	1
		Low pressure	 ✓
		 Power supply voltage 	✓ ✓
		Total operating current	1
		 Compressor operating current 	
		Evaporator inlet temperature	
		Evaporator outlet temperature	
		Discharge gas temperature	
		Compressor suction gas temperature	
		Suction modulating valve opening	
		 Electronic expansion valve opening Return air temperature (during PTI only) 	
		Supply air temperature (during PTI only)	
		• Pulp temperature (USDA #1, #2, #3)	Optional
		Cargo temperature	Optional
		Fresh air quantity	Optional
-	Calf diamagia and		Optional
5	Self-diagnosis and automatic back-up	Sensor Return air temperature sensor Supply air temperature sensor	
	automatic back-up	Ambient temperature sensor	
		High pressure sensor	
		Low pressure sensor	
		Voltage sensor	
		Current sensor	
		Evaporator inlet temperature sensor	 ✓
		Evaporator outlet temperature sensor	
		Discharge gas temperature sensor	✓
		Compressor suction gas temperature sensor	 ✓
		Humidity sensor	Optional
		Pulp temperature sensor	Optional
		Cargo temperature sensor	Optional
		Data recorder sensor	Optional
		High pressure switch	
		Solenoid valve/hot gas modulating valve (leakage check)	
		Long defrosting	
		Over-voltage	

No.	Function division	Function	DECOSⅢd
5	Self-diagnosis and	Open-phase running	1
	automatic back-up	Over current running	1
		CPU and peripheral device (electronic controller)	1
6	Manual inspection	Compressor running hour indication	1
		• Evaporator fan individual operation (high speed)	
		 Evaporator fan individual operation (low speed) Condenser fan individual operation 	1
		 Indication of elapsed time since trip start/time resetting 	✓ ✓
		Evaporator fan run-hour indication	1
		Condenser fan run-hour indication	1
		 Controller software version indication 	1
		• [PC] Pulp temperature sensor/cargo temperature sensor calibration	Optional
		• [PC] Header information set of data logger	
		• [PC] All sensor data indication	
		• [PC] Controller built-in relay output display/MV output (opening rate) indication/EV output (opening rate) indication	~
7	Automatic PTI	Automatic PTI (SHORT) = Operation check of components	1
'		Automatic PTI (FULL)	✓ ✓
8	Data logging	Compressor total running hour	· ·
0	Data logging	Evaporator fan motor total running hour	✓ ✓
		Condenser fan motor total running hour	1
		Trip data	1
		Pulp temperature data	Optional
		Cargo temperature data	Optional
		Fresh air quantity data	Optional
		 Alarm logging data Automatic PTI data 	1
		• Event data	1
9	Data retrieving	• [PC] Alarm data	1
5	(Data output)	• [PC] Trip data	1
	(• [PC] Automatic PTI data	1
		• [PC] Pulp temperature data	Optional
		• [PC] Cargo temperature data	Optional
		• [PC] Event data	1
10	Communication	Remote monitoring	Optional
		Remote control	Optional
11	Power back-up	*Even while the power is off, the following works are possible.	-
		Setting, Temperature setting	Ontional
		Humidity setting Defrosting interval setting	Optional
		[PC] Container ID data setting	✓ ✓
		Saving the logger data record	1
		Data retrieving (down loading)	1
12	Chartless	Alarm indication function (H code)	1
		Operation history indication function (D code)	1
		Pull-down time indication function (P code)	
		Temperature logging data indication on LCD in simple graphic chart	<i>√</i>
13	G-SET mode	*To be used when power supply capacity is small.	
		Energy saving operation	
	Data scroll	 Temperature log scroll indication function Alarm log indication function 	1
14			v
	Data insut		
14 15	Data input	*The following works are possible using the indication panel	1
	Data input	 The following works are possible using the indication panel Container ID (No.) entering 	1
	Data input Automatic	*The following works are possible using the indication panel	<i>J</i> <i>J</i>

3.2 BASIC OPERATION OF ELECTRONIC CONTROLLER

3.2.1 Control panel

Name and function of each components

- 1 SUPPLY LED (Lights when "supply air temperature" is indicated.)
- O RETURN LED (Lights when "return air temperature" is indicated.)
- (3) ALARM LED (Lights when alarm is generated.)
- (4) R.H.LED (Lights when "relative humidity" is indicated.)
- (5) COMP.LED (Lights when the compressor is running.)
- 6 DEFROST LED (Lights when the unit is under the defrosting operation.)
- ⑦ IN RANGE LED (Lights when the control temperature is in range.)
 ⑧ DE-HUMID.LED (Lights when the controller is the
 - dehumidification control optional.)
- (9) Temperature base (Used for the graphic chart indication on the LCD.)
- $(\!0\!)$ Time base (Used for the graphic chart indication on the LCD.)

Function of operation key

●UNIT ON/OFF key

To start or to stop the unit operation.

The controller has a memory function.

If the power supply is cut off suddenly while the unit is on, and the power supply is then turned on again, the unit automatically starts the operation without pressing this key again. If the power supply is cut off while the unit is off, the unit does not start the operation unless this key is pressed.

MODE key

To carry out the following control

- (1) Generator set (=Power corsumption control)
- Automatic pump down
- ③ Dehumidification set
- ④ Test set

SET key

When the power supply is ON:

- Change operation mode from the CURRENT INDICATION MODE to the OPERATION SETTING MODE.
- Select the item to be set in the operation setting mode.

When the power supply is OFF:

 To change operation modes from the POWER OFF MODE to the BATTERY OPERATION MODE.

SELECT •

SELECT key

Fresh air quantity (FA) can be displayed.

●UP key

To select the item to be set in the selected mode.

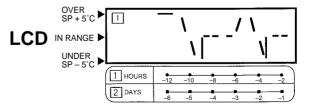
DOWN key

To select the item to be set in the selected mode.

ENTER/ESC

●ENTER/ESCAPE key

L

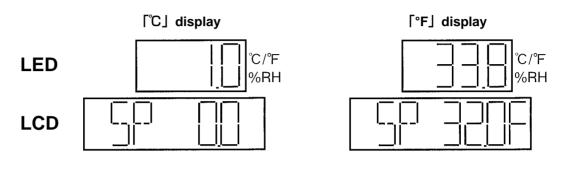

To determine the setting values or displayed contents in the selected mode.

HCHART

CHART key (DISPLAY SELECT key)

If CHARTLESS Function is "ON", this key is effective.

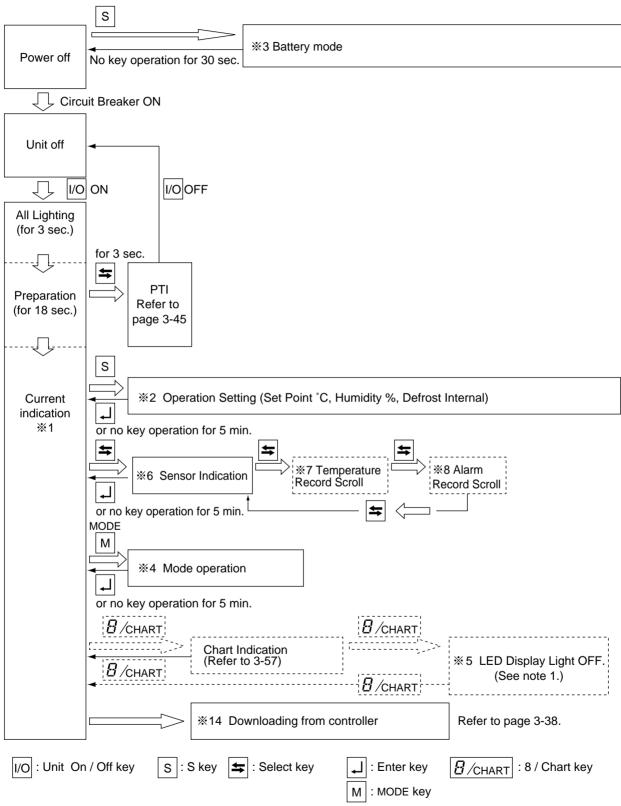
To display logged temperature data in a simple graphic chart on the LCD, press this key when the display reads "set point temperature" or other data. When this is pressed once again, the display returns to "set point temperature" or other data again.



 Indicate the temperature data required to be converted into "°F" on the LED or the LCD.

Press the $\fbox{}^{\mathbb{C}}F$ key, then the temperature data displayed in " $^{\circ}$ C" is converted into " $^{\circ}$ F" for one minute.

% If any other key is pressed during the "°F" indication, the display switches to "°C".


MANUAL DEFROST ①Press the MANUAL DEFROST & kev.

- *Once defrosting operation starts, the operation mode is not changeable until the defrosting operation completes. If this key is pressed during the defrosting operation, it is ineffective.
- * Defrosting will not start when the evaporator outlet temperature is 20°C or higher or the inlet temperature is 5°C or higher.

3.2.2 Operation mode and control

	Setting temperature		
Operation mode	Chilled mode	Frozen mode	
Operation	Set the set point temperature at	Set the set point temperature at	
procedure +30 to -5.0°C - (+86 to +23.0°F).		–5.1 to –30.0°C (+22.8 to –22°F).	
Function	Chilled mode operation is initiated. Inside temperature is controlled proportionally in modulation by the supply air temperature sensor.	Frozen mode operation is initiated. Inside temperature is controlled by cycling ON/OFF of compressor by the return air temperature sensor.	
Evaporator fans run at high speed		Evaporator fans run at low speed	

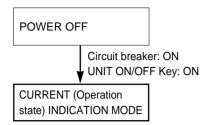
3.3 Operation procedure 3.3.1 Operation procedure flow chart

Note 1. %5 activates when the "dISP" in %11 is set to "ON" in controller initial setting in page 3-28.

%1. Current indication mode (indication of operation conditions)		
Indicates the unit operation conditions.	 Supply air temperature (SS) 	
	Return air temperature (RS)	P 3-9
	Defrost interval	
	●Alarm	
	Setting point humidity and humidity (OPTION)	
Settings for cargo transportation	Defrost interval settingsHumidity settings (optional)	P 3-10
3. Battery mode (settings for operat Setting can be executed when commercial power supply is not available.	Temperature display	P 3-11
	Humidity settingsDefrost interval settings	

%4. Mode operation	
•The maximum power consumption can be set.	
The pump down can be executed automatically.	
Dehumidification mode can be set.	
●Test mode can be set.	

%5. Sensor indication mode		
Each sensor value can be indicated.	 Discharge gas temperature (DCHS) 	
	 Suction gas temperature (SGS) 	
●Fresh air quantity (FA)	Modulating valve opening	
●High pressure (HPT)	Electronic expansion valve opening	
●Low pressure (LPT)	 Supply air temperature (SS) 	
●Total current (CT1)	Return air temperature (RS)	P 3-16
Compressor current (CT2)	●Pulp temperature (USDA #1, #2, #3)	
●Voltage (PT1)	●Cargo temperature (CTS)	
Ambient temperature (AMBS)	 Data recorder supply air temperature (DSS) 	
•Evaporator inlet temperature (EIS)	 Data recorder return air temperature (DRS) 	
•Evaporator outlet temperature (EOS)	[optional]	


%6. Temperature record scroll	function	
Temperature record of the control sensor	Chilled mode: Supply air temperature	
can be indicated in the order (scroll	Frozen mode: Return air temperature	P 3-19
indication) from the latest data.	(up to 7 days)	
,		

%7. Alarm record scroll function	on	
Alarm record can be indicated in order	Alarm indication	P 3-22
(scroll indication) from the latest data.	(up to 7 days)	1 3 22
	(ap to : 00,0)	

3.3.2 Mode operation procedure

1. CURRENT (Operation state) INDICATION MODE

Supply air temperature (SS), return air temperature (RS), defrosting interval, currently existing alarm, set point humidity, and humidity are indicated.

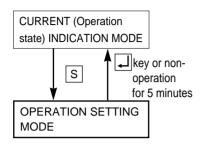
Turn on the circuit breaker and the UNIT ON/OFF key after turning the power supply on, then the display panel switches to the CURRENT INDICATION MODE. (Key operation in the CURRENT INDICATION MODE is possible after approx. 21 seconds from turning on the UNIT ON/OFF key.)

In the CURRENT INDICATION MODE, supply air temperature, return air temperature, defrosting interval, current alarm and current humidity (optional) are shown.

Select an item using the \bigtriangleup or \bigtriangledown key. The value of the selected item is indicated on the LED lamp, LED display and LCD display.

	Indication item	LED lamp to be lit on	LED display	LCD display
	SUPPLY AIR TEMPERATURE	SUPPLY	Supply air temperature	Set point temperature
	RETURN AIR TEMPERATURE	RETURN	Return air temperature	Set point temperature
	DEFROSTING INTERVAL	Chilled mode: SUPPLY Frozen mode: RETURN	Chilled mode: SUPPLY air temperature Frozen mode: RETURN air temperature	Current defrosting interval setting
		ALARM	All the detected alarms codes or ("Good" if there is no detected alarm)	The total number of detected alarms
	L A I I I I I I I I I I I I I I I I I I	R.H.	Value of humidity sensor	Set point humidity

Note 1) ●Each pressing of the down key, scrolls through the detected alarm codes in sequence when two or more alarm codes are displayed.


After indicating the last alarm, display goes to the next item.

The numerator of the LCD display stands for the current alarm, while the denominator stands for the number of alarm codes existing.

- ●To erase the d code or H code alarm, depress the ↓ key for 3 seconds while the code is displayed.
- Note 2) The value of the humidity sensor is displayed only when the "Dehumidification Control on/off Setting" is set to "ON", otherwise this item is skipped and the next item is shown.

2. OPERATION SETTING MODE

Control temperature, defrosting interval, and control humidity (optional) can be set.

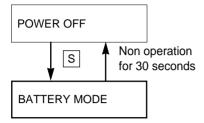
To change to the OPERATION SETTING MODE, press the S key while the unit is in the CURRENT INDICATION MODE.

In the OPERATION SETTING MODE, Control temperature, Control humidity (optional) and Defrosting interval can be set.

Select an item using the S key. The value of the selected item is indicated on the LED and LCD display.

Item			LED display	LED display	Setting method
		CURRENT INDICATION MODE	_	_	-
or non operation for 5 minutes			Current setting temperature	"SET-SPC" or "SET- SPF"	Change the value using the \bigtriangleup key or \bigtriangledown key. Press the \square key to
or 5 n	-	TEMPERATURE SETTING	Note 2)		determine the setting.
ation f					Setting temperature range; -30 to 30°C.
opera		S	Current setting	"SET-SHU"	Change the value using the 🛆 key
uou	◄	CONTROL HUMIDITY SETTING	humidity		or 🗸 key. Press the 📕 key to
key		(Note 1)			determine the setting. Setting humidity range: 60 to 95%RH
ī		, s	Current defrosting	"SET-dEF"	Select a defrost interval 99h, 24h,
	S	DEFROST INTERVAL SETTING	interval		12h, 9h, 6h, or 3h using \bigtriangleup key or \bigtriangledown key. Press the \square key to
					determine the setting.
					"On demand defrosting" is
					conducted when "99h" has been
					selected. (See page 2-14.)

Note 1) This indication appears only when the humidity control is set, otherwise this is skipped and the next item is shown.


Note 2) ●In case temperature is set in °C setting temperature can be set at interval of 0.1 °C.

In case temperature is set in °F, setting temperature should be the value converted into °F based on °C and rounded off the two decimal places.

3. BATTERY MODE

When commercial power is not available, the following functions are available by using the built-in wake up battery.

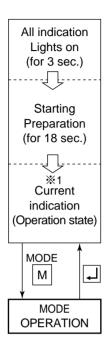
- Indication of inside supply air temperature (SS) and return air temperature (RS)
- Setting for control temperature, control humidity and defrost interval

To change to the BATTERY MODE, press the S key while the unit is in the POWER OFF STATUS.

In the BATTERY MODE, return air temperature/supply air temperature can be indicated, Control temperature, Control humidity (optional), Defrosting interval and Unit ON/OFF key can be set.

Select an item using the S key. The value of the selected item is indicated on the LCD screen. When no key operation is performed for 30 seconds in the BATTERY MODE, the battery mode turns off automatically off.

Item	LED display	LCD display	Setting method
POWER OFF	-	_	. –
RETURN AIR TEMPERATURE DISPLAY	(Light off)	RS※※※.※C Note 1)	-
SUPPLY AIR TEMPERATURE DISPLAY	(Light off)	SS※※※.※C Note 1)	_
FRESH AIR QUANTITY DISPLAY	(Light off)	FA%%	_
	(Light off)	SP%**.*C	-
Lo L	(Light off)	"SP C"	Change the value using the \bigtriangleup key or \bigtriangledown key. Press the \checkmark key to determine the setting. Setting temperature range; -30 to +30°C.
CONTROL HUMIDITY SETTING	(Light off)	"SHU "	Change the value using the \bigtriangleup key or \bigtriangledown key. Press the \checkmark key to determine the setting. Setting humidity range: 60 to 95%RH
S DEFROST INTERVAL SETTING S	(Light off)	"dEF H"	Select a defrost interval 99h, 24h,12h,9h,6h or 3h using the △ key or ▽ key. Press the ↓ key to determine the setting. "On demand defrosting" is conducted when "99h" has been selected. (See page 2-14.)
	(Light off)	"UNIT ON" or "UNIT OFF"	Change the value using the \bigtriangleup key or \bigtriangledown key. Press the \blacksquare key to determine the setting.


Note 1). The inside sensor temperature is indicated on the section of ***.*.

If no indication on the LCD panel is displayed by operating the key, it is supposed the wake-up battery is dead. Replace the battery.

4. MODE OPERATION

 $\begin{array}{c} \text{MODE} \\ \\ \text{Press the} \end{array} \quad \boxed{\text{M}} \quad \text{key in current indication mode to go to MODE operation.} \end{array}$

In mode operation, the following settings/operations are available.

1. Generator setting

Total power consumption can be reduced to desired Max setting for the specific generators set or power facilities.

The selections are "off (No limit)", "15" "14" "13" "12" "11" KVA.

2. Automatic pump down

Pump down can be executed automatically.

(Refer to "Automatic pump down" in 4.1.3)

3. Dehumidification mode setting

Dehumidification mode can be executed in this mode (Dehumidification mode control in 2.5.4). When "Dehumidification" is set to "on", it is possible to change the following set from default. ①Inside humidity : 95% (Default) ~60% RH

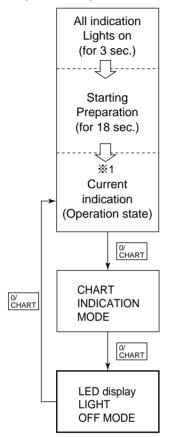
4. Test mode

To make measurement of the power consumption and others of a unit, set the unit to dedicated test operation mode in which normal defrosting operation is disabled.

Setting item	LED panel	LCD panel	Setting method
Current indication mode MODE	_		_
G-set operation Note 1)	OFF, 11, 12, 13, 14, 15 unit: kVA	G-SET	Select the energy saving set point by using △ or ▽ key, and press the ↓ key to determine the setting.
Automatic pump down operation MODE M	ON, OFF	P down	Select "ON" by using △ key and ▽ key, and press the ↓ key to determine the setting.
Dehumidification OFF ON MODE MODE M	ON/OFF	dHu	Select desired setting by △ or ▽ key, then press ↓ key.

Note 1) If the power supply is turned off in the G-set mode, the mode is cancelled 30 minutes from when power was lost.

Setting item	LED panel	LCD panel	Setting method
OFF ON Humidity set MODE	95% RH~30% RH	SET-SHU	Select desired setting by \bigtriangledown key or \bigtriangleup key, then press \checkmark key to determine.
Test MODE	ON/OFF	TEST	Select desired setting by \bigtriangledown key or \bigtriangleup key, then press \checkmark key to determine.


5. LED display LIGHT-OFF MODE

The controller LED display is turned off with this mode.

% Activation of the panel (LED) lighting off mode.

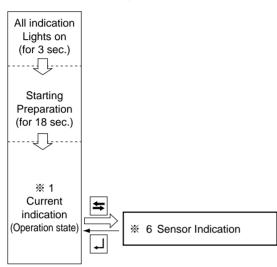
To activate the panel (LED) lighting off mode, set the LED lighting off function "dISP" in "11. Basic setting mode" to ON. Refer to page 3-27.

<Operation procedure>

Push the $\frac{0'}{CHART}$ key twice during current indication mode to switch to the panel (LED) lighting off mode.

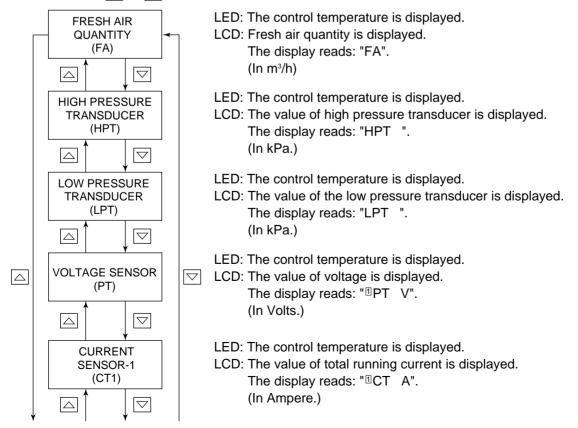
(When pushing the key once, the mode changes to chart indication mode.)

When the panel (LED) lighting off mode activates, the LED lighting is turned off and the LCD reads "dISPOFF".

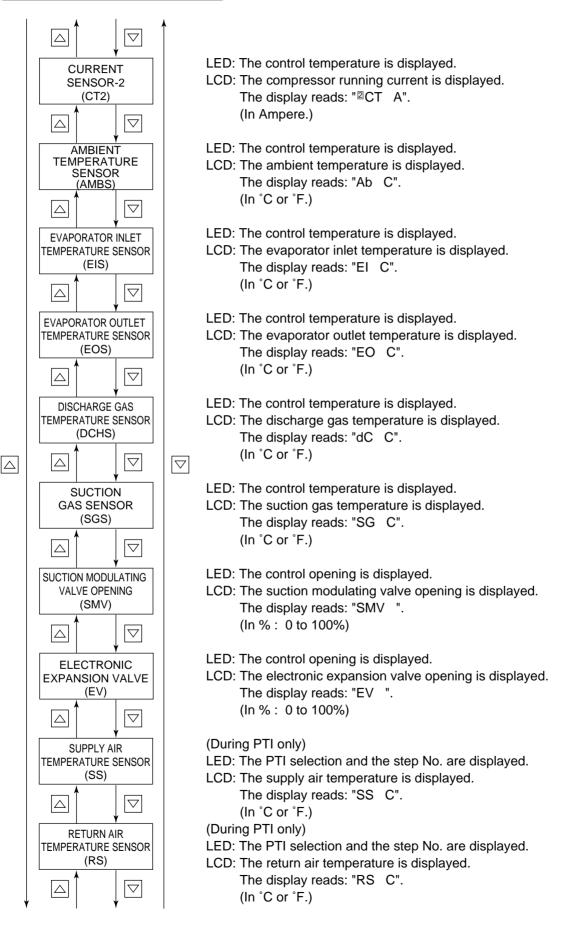

* Cancellation of panel (LED) lighting off mode.

When the $\begin{bmatrix} 0'\\ CHART \end{bmatrix}$ key is pushed again, it returns to current indication mode and LED turns ON.

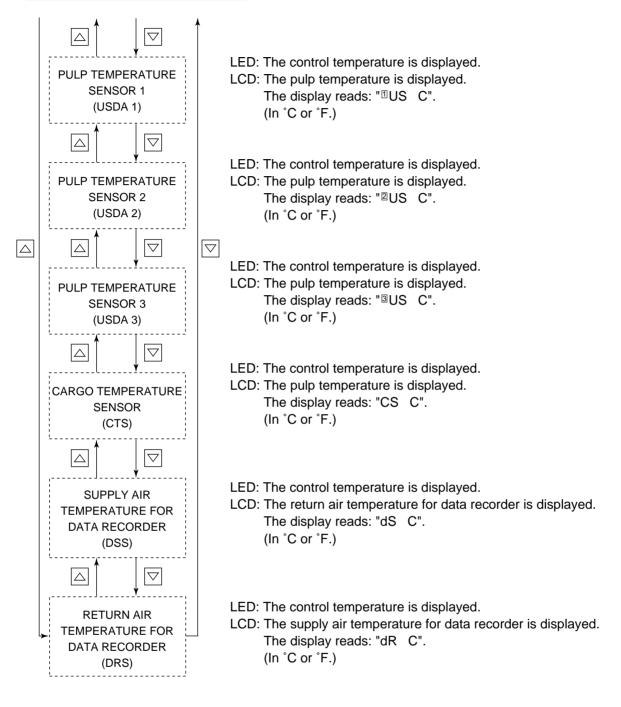
6. SENSOR INDICATION MODE


Each sensor value, the modulating valve (MV) opening, the electronic expansion valve (EV) opening and the fresh air quantity (FA) can be checked. The following items are displayed: High pressure (HPT), low pressure (LPT), voltage (PT1), total current (CT1), compressor current (CT2), ambient temperature (AMBS), evaporator inlet temperature (EIS), evaporator outlet temperature (EOS), discharge gas temperature (DCHS), suction gas temperature (SGS), suction modulating valve opening, electronic expansion valve opening, supply air temperature (SS) (during PTI only), return air temperature (RS) (during PTI only), pulp temperature (USDA#1, UADA#2, USDA#3) (optional), cargo temperature (CTS) (optional), supply air temperature for data recorder (DSS) (optional), return air temperature for data recorder (DRS) (optional).

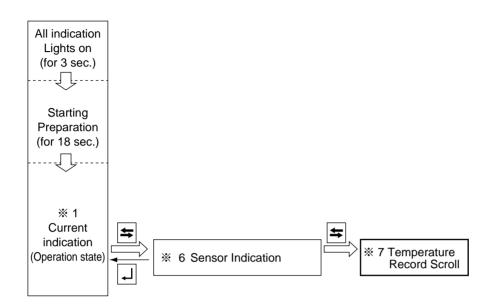
<Mode selection procedure>



<Operation procedure>


Whenever the \bigtriangleup or \bigtriangledown key is pressed, the display changes.

6. SENSOR INDICATION MODE (continued)


6. SENSOR INDICATION MODE (continued)

7. TEMPERATURE RECORD SCROLL MODE

The control sensor value record is shown in sequence (scroll) starting with the latest data. The latest control temperatures for a maximum of 7 days are displayed.

<Mode selection procedure>

<Operation procedure>

The LED indicates the control temperature, and the LCD displays the data/time and the data record temperature in turn. (In the partial frozen mode and frozen mode, the return air temperature is the controlled temperature, and in the chilled mode, the supply air temperature is the control temperature.)

To pauze the scrolling action, press the \bigtriangleup or \bigtriangledown key. To continue to the next temperature record manually, press the \bigtriangleup or \bigtriangledown key during the holding of indication, or to resume the automatically scroll function, do not press any key for 10 seconds. To see data beginning with start again, press and hold the \bigtriangleup key for 3 seconds.

To restore the current indication mode, press the \square key.

If key operation is not performed within 5 minutes, the current indication mode is resumed. To go to the operation setting mode, press the [S] key.

Temperature record scroll function

The control sensor value record for the last 7 days is displayed in sequence (scroll) beginning with the latest one and ending with oldest one, so that easy inspection of the previous operation data is enabled on board.

<Operation procedure>

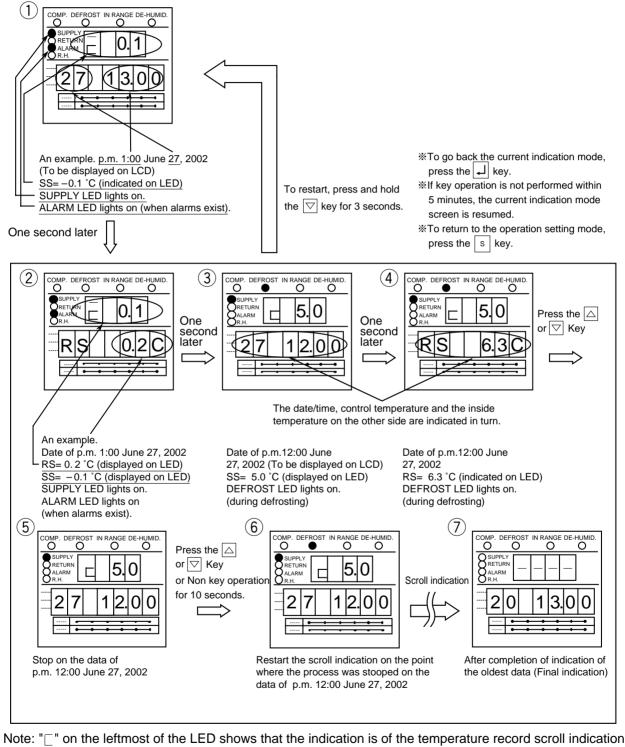
The LED indicates the control temperature, and the LCD displays the data or time and the non-control temperature in turn. (In the partial frozen and frozen modes, return air temperature is the controlled temperature, and in the chilled mode, supply air temperature is the controlled temperature.)

To pauze the scrolling action, press the \bigtriangleup or \bigtriangledown key. To advance to the next temperature record, press the \bigtriangleup or \bigtriangledown key again. If arrow key is not pressed for 10 seconds, the continuous scrolling action is resumed. To see data from the beginning, press and hold the \bigtriangledown key for 3 seconds.

To restore the current indication mode screen, press the

If key operation is not performed for 5 minutes, the current indication mode screen is resumed. If the successive (scroll) screen is currently displayed, the current indication mode screen is resumed when 5 minutes elapses after indication ends.

To return to the operation setting mode, press the S key.

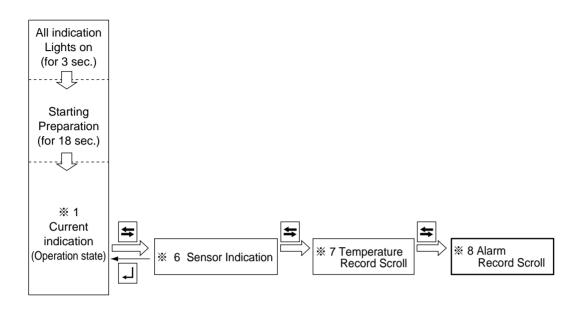

The displayed temperature is not the current instantaneous value but an average taken in a specific logging interval. Therefore, the printed control temperature on the trip report (instantaneous value) printed with the aid of personal computer may differ from the sensor

data of the chartless function.

This is not an error.

● Example of TEMPERATURE RECORD SCROLL INDICATION MODE

% It is assumed that the control temperature is the supply air temperature (SS) and the logging interval is 1 hour, and the current date and time are June 27, 2002, 14:00.



mode.

8. ALARM RECORD SCROLL MODE

The alarm record is shown in sequence (scroll) starting with the latest data. The latest alarms for a maximum of 7 days are displayed.

<Mode selection procedure>

<Operation procedure>

The LED indicates the alarm codes and the LCD displays date and time.

To pauze the scrolling action, press the \bigtriangleup or \bigtriangledown key. To continue to the next alarm record, press the \bigtriangleup or \bigtriangledown key during the holding of indication, or to resume the automatically scroll function, do not press any key for 10 seconds. To see data beginning with start again, press and hold the \bigtriangledown key for 3 seconds.

To restore the current indication mode, press the If key operation is not performed within 5 minutes, the current indication mode is resumed. To go to the operation setting mode, press the S key.

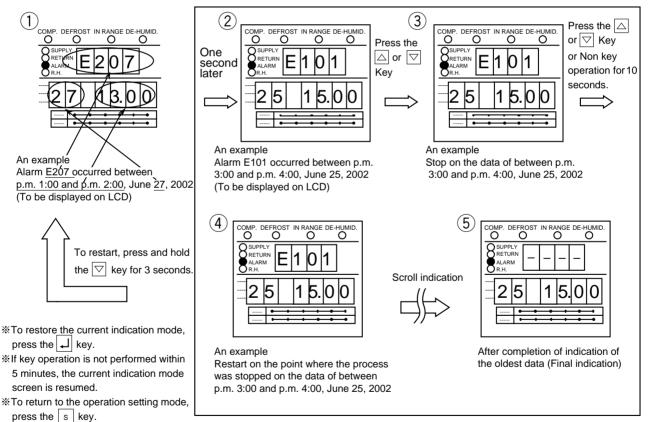
Alarm record scroll function

The alarms detected over the last 7 days are displayed on the controller which scrolls through them at the rate of one sec/alarm.

< Operation procedure >

The LED indicates alarm codes, and the LCD displays date and time.

To pauze the scrolling action, press the \bigtriangleup or \bigtriangledown key. To advance to the next alarm code detected, press the \bigtriangleup or \bigtriangledown key again. If arrow key is not pressed for 10 seconds, then the continuous scrolling action is resumed. To see data from the beginning, press and hold the \bigtriangledown key for 3 seconds.

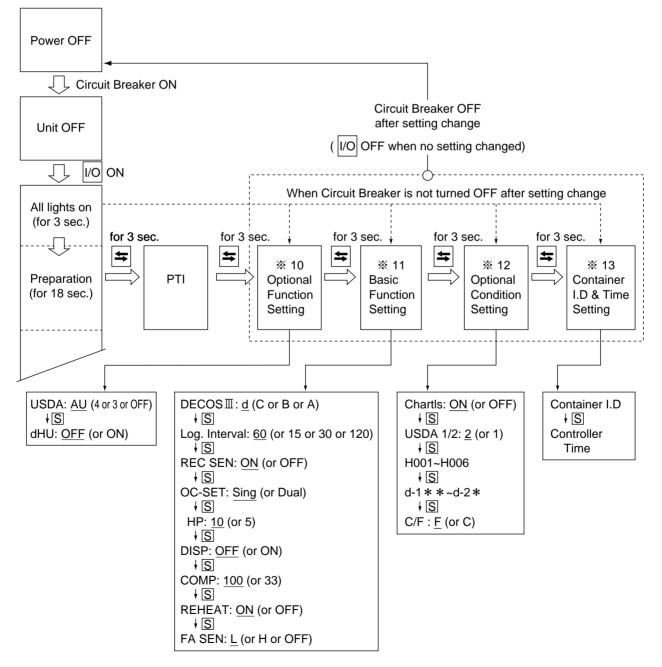

To return to the current indication mode screen, press the \square key.

If key operation is not performed for 5 minutes, the current indication mode screen is resumed. If the successive (scroll) screen is currently displayed, the current indication mode screen is resumed when 5 minutes elapses after the indication ends.

To return to the operation setting mode, press the S key.

• Example of ALARM RECORD SCROLL INDICATION MODE

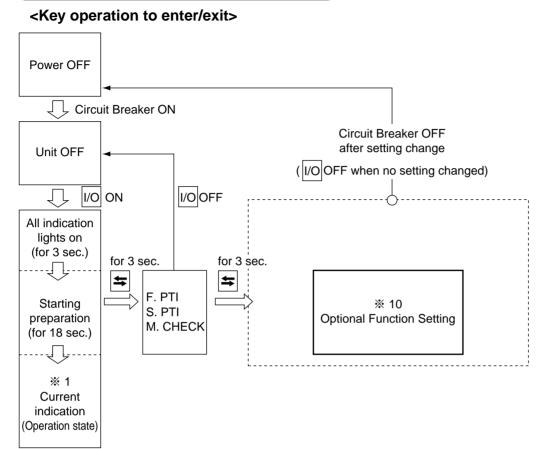
* It is assumed that the current date and time are June 27, 2002, 14:00.


3.3.3 Setting flow chart

This configuration setting flow shall be utilized, when

- CASE 1) USDA transportation setting is required (%10 Optional Function Setting)
- CASE 2) Logging intervals shall be changed from default setting (60 min).
 - (%11 Basic Function Setting)
- CASE 3) Setting of any H / d codes shall be changed from default. (%12 Optional Condition Setting)
- CASE 4) Container ID shall to be subjected to change from another container for emergency use. (%13 Container ID & Time Setting)
- CASE 5) Controller is replaced to new one. (All setting in %10~%13 shall be set.)

NOTE 1 : All initial settings are pre-set, when the unit is delivered.


- (The initial setting for LXE10E-1 are <u>underlined</u> figures.)
- 2 : In CASE 5), the settings of "CHARTLS" and "USdA 1/2" shall be changed from default (Default of spare controller : CHARTLS=Off, UsdA=1) to set for LXE10E-1 as below underlined.
- 3 : In order to complete the setting change, CIRCUIT BREAKER shall be turned off

 *10. Optional function mo USDA sensor setting 	ode	P 3-26
Dehumidification control on/off set	ting	
%11. Basic function settin	a mode	
Controller type	Logging interval	
Compressor unload	Data recorder sensor on/off	P 3-27
Reheat coil	Power supply	P 3-27
FA H/L	Compressor horse power	P 3-20
	• Indication (I ED caption) light off function	
	Indication (LED section) light off function	
	on/off	
%12. Optional condition s	on/off etting mode	
Chartless function setting	etting mode •H001 •d1	D 0 00
Chartless function setting Type of USDA sensor	on/off etting mode ●H001 ●d1 ●H002 ●d2	P 3-29
Chartless function setting Type of USDA sensor	on/off etting mode ●H001 ●d1 ●H002 ●d2 ●H003 ●d3	P 3-30
Chartless function setting Type of USDA sensor	on/off etting mode	
Chartless function setting Type of USDA sensor	on/off etting mode ●H001 ●H002 ●H003 ●H004 ●H005	P 3-30
Chartless function setting	on/off etting mode	P 3-30
Chartless function setting Type of USDA sensor	on/off etting mode ●H001 ●H002 ●H003 ●H004 ●H005	P 3-30
Chartless function setting Type of USDA sensor	on/off etting mode ●H001 ●H002 ●H003 ●H004 ●H005	P 3-30

ersonal computer and controller	
%14. Controller software download mode	
Data logged in a personal computer and controller is exchangable.	P 3-32
For the details, refer to the "Operation manual for personal computer software".	

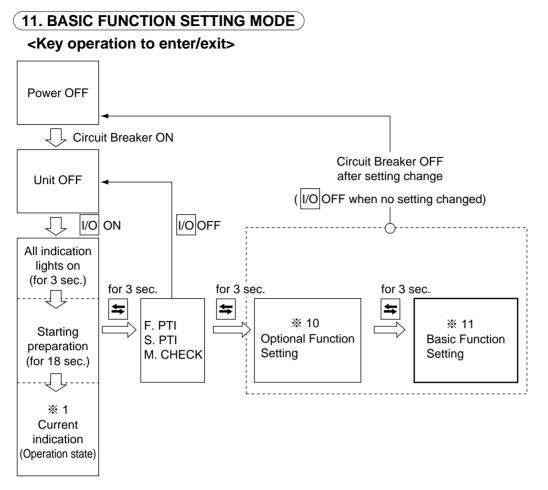
10. OPTIONAL FUNCTION SETTING MODE

<Key operation in this mode>

Whenever the S key is pressed, the display changes.

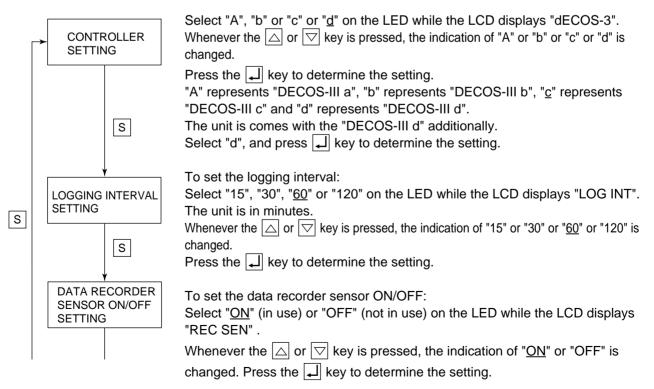
Turn the power breaker OFF after the setting.

			To set the USDA AUTO/ON/OFF and CARGO TEMPERATURE SENSOR
	-	USDA SENSOR ON/OFF, CARGO TEMPERATURE SENSOR ON/OFF SETTING	ON/OFF: Select "OFF (not in use)", "3 (3 USDA probes are in use)", "4 (3 USDA probes and 1 cargo temperature sensor are in use)", or " <u>AU</u> (AUTO
S			setting)" on the LED while the LCD displays "USdA". Whenever the △ or ▽ key is pressed, the indication of "OFF" or "3" or "4" is changed. Press the ↓ key to determine the setting.
		CONTROL ON/OFF SETTING	Note: When two USDA probes are connected, the setting will be determined automatically to "3" (3 USDA probes are in use).

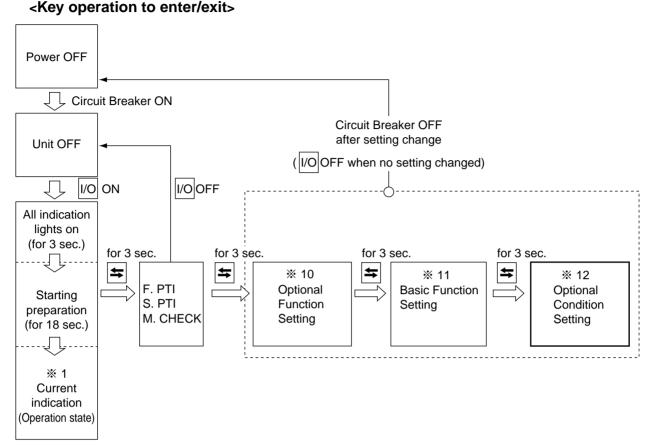

To set the DEHUMIDIFICATION CONTROL:

Select "ON" (conducting dehumidifying with humidity sensor) or "<u>OFF</u>" (conducting no dehumidifying) on the LED while the LCD indicates "dHU".

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication of "ON" or "OFF" is changed.

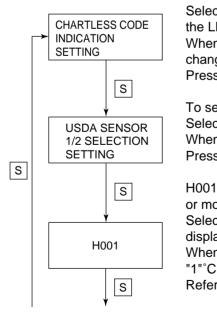

Press the \square key to determine the setting.

Note : This setting can be changed by M key. (Refer to page 3-12)


<Key operation in this mode>

Whenever the S key is pressed, the display changes. Turn the power breaker OFF after the setting.

12. OPTIONAL CONDITION SETTING MODE)



<Key operation in this mode>

Whenever the S key is pressed, the indication changes.

Turn the power breaker OFF after the setting.

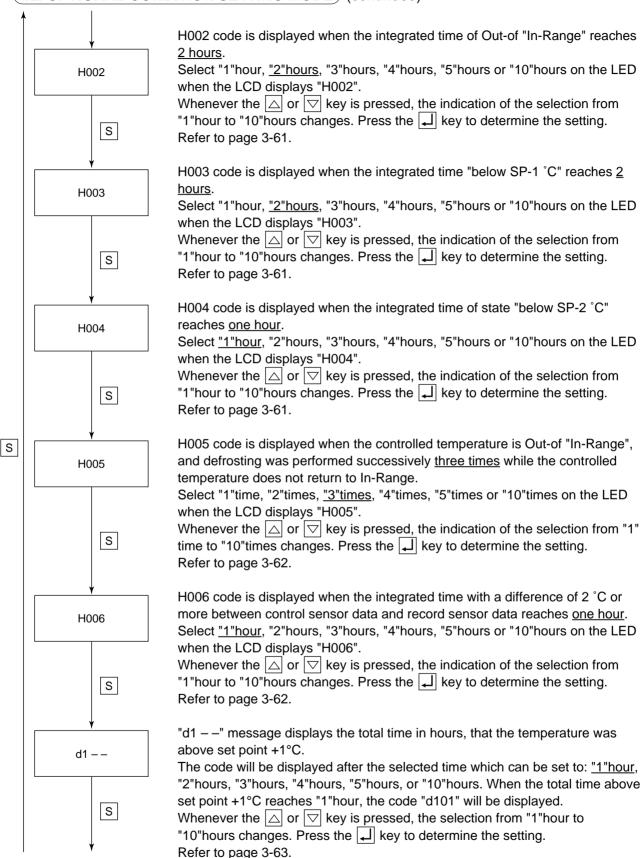
To set the chartless code (D code /H code):

Select "<u>ON</u>" (indication of D/H code) or "OFF" (no indication of D/H code) on the LED when the LCD displays "CHARTLS".

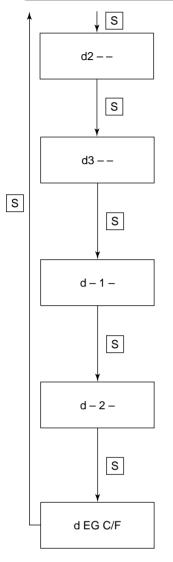
Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication of "<u>ON</u>" or "OFF" is changed.

Press the le key to determine the setting.

To set the USDA sensor selection:


Select "1" or "2" on the LED when the LCD displays "USdA1/2". Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication of "1" or "2" is changed. Press the \checkmark key to determine the setting.

H001 code is displayed when the control temperature does not lower by 3 $^{\circ}$ C or more for every 4 hours in pull-down operation.


Select "1" °C ,"2" °C ,"<u>3</u>" °C ,"4" °C ,"5" °C or "10" °C on the LED when the LCD displays "H001".____

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication of the selection from "1"°C to "10" °C changes. Press the \checkmark key to determine the setting. Refer to page 3-61.

12. OPTIONAL CONDITION SETTING MODE (continued)

12. OPTIONAL CONDITION SETTING MODE (continued)

"d2 – –" message displays the total time in hours, that the temperature was above set point +2°C. The code will be displayed after the selected time which can be set to: <u>"1"hour</u>, "2"hours, "3"hours, "4"hours, "5"hours, or "10"hours. When the total time above set point +2°C reaches "1"hour, the code "d101" will be displayed.

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the selection from "1"hour to "10"hours changes. Press the \checkmark key to determine the setting.

Refer to page 3-63.

"d3 – –" message displays the total time in hours, that the temperature was above set point +3°C. The code will be displayed after the selected time which can be set to: <u>"1"hour</u>, "2"hours, "3"hours, "4"hours, "5"hours, or "10"hours. When the total time above set point +3°C reaches "1"hour, the code "d101" will be displayed.

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the selection from "1"hour to "10"hours changes. Press the \checkmark key to determine the setting.

Refer to page 3-63.

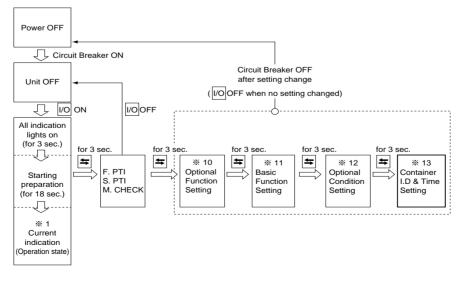
"d – 1 –" message displays the total time in hours, that the temperature was below set point -1°C. The code will be displayed after the selected time which can be set to: <u>"1"hour</u>, "2"hours, "3"hours, "4"hours, "5"hours, or "10"hours. When the total time below set point -1°C reaches "1"hour, the code "d101" will be displayed.

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the selection from "1"hour to "10"hours changes. Press the \checkmark key to determine the setting.

Refer to page 3-63.

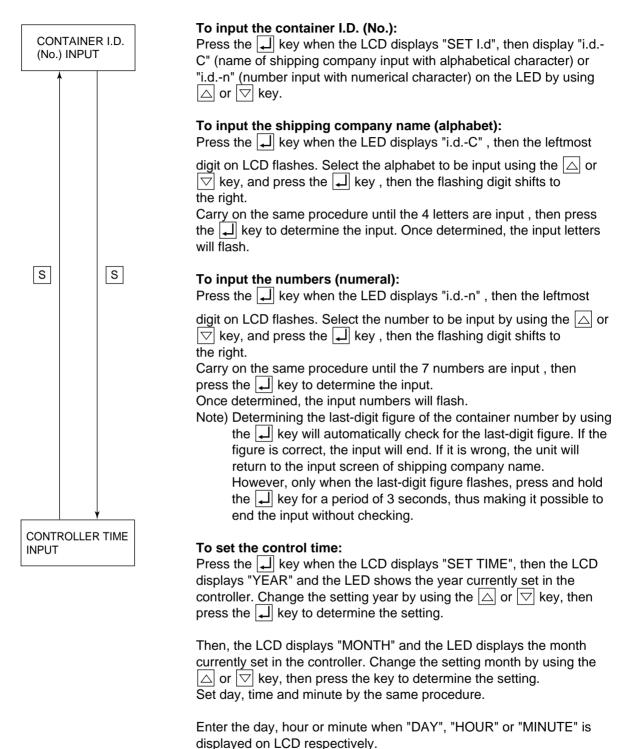
"d – 2 –" message displays the total time in hours, that the temperature was below set point -2°C. The code will be displayed after the selected time which can be set to: <u>"1"hour</u>, "2"hours, "3"hours, "4"hours, "5"hours, or "10"hours. When the total time below set point -2°C reaches "1"hour, the code "d101" will be displayed.

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the selection from "1"hour to "10"hours changes. Press the \checkmark key to determine the setting.


Refer to page 3-63.

With dEG C/F mode, can be selected.

Select "E" or "C" on the LED when the LCD displays "d EG C/F".


Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication of the selection "<u>F</u>" or "C" changes. Press the \checkmark key to determine the selection. "C" stands for °C/kPa while "F" for °F/PSI.

13. INPUT DATA MODE <Key operation to enter/exit>

<Key operation in this mode>

Whenever the S key is pressed, the indication changes. Turn OFF the power breaker to confirm the setting.

14. CONTROLLER SOFTWARE DOWNLOAD MODE)

The data on personal computer and a controller are interchanged in this mode. For details, see the Operation Manual For Personal computer software. Downloading is possible even in "3. BATTTERY MODE". page 3-11.

not be recognized.

If the power circuit breaker (CB) is not turned off, the new setting will

3.4 Alarm display and back-up function

3.4.1 Alarm list

Ala grou	rm uping	Alarm code	Alarm content	Action with alarm
<u> </u>		F101	HPS activated within 30 seconds after operation start or protection device activated 5 times at start-up operation or Fuse 1 brown (Refer Page 7-8).	Unit stops
	-	F109	Low- pressure drops to-85kPa or lower within 2 seconds after operation start.	Unit stops
ç	rermanent stop			Unit stops
č	SI	Find Find Find Find Find Find Find Find		Unit stops
ţ	llié	F301Temperature setting required (SRAM failure)F401Return/Supply air sensor malfunction (at chilled mode)		Unit stops
ŝ	ane	F403	Return/Supply air sensor malfunction (at partial frozen mode)	Unit stops
į	E E	F603	Suction modulating valve (SMV) does not fully close contrary to the designation	
i (ell		or initial setting of the controller is wrong.	Unit stops
Ľ	L	F701	Abnormal high voltage	Unit stops
		F705	S phase became open phase	Unit stops
		F803	Abnormalities, which make it impossible to continue operation (Note2.)	Unit stops
	c	E101	High-pressure switch activated during normal operation.	Restart after 3-minute
	atio	E103	CTP or electronic OC activated during normal operation.	Restart after 3-minute
	activ	E105	Micro processor OC activated during normal operation.	Restart after 3-minute
	Ce	E107	DCHS became abnormal high temperature during operation.	Restart after 3-minute
	devi	L107	In the event the refrigerant circulation rate is low, the unit	If this error occurs two times, F803
	Protection device activation		will stand by for three minutes to restart then.	error will be detected to stop the unit.
	tecti	E109	Low pressure drops to–90kPa or lower for 2 seconds	Restart after 3-minute
	Pro	2100	or longer successively during normal operaton.	
	o.	E201	Pump down is not completed within 90 seconds.	Only alarm display
	err	E203	Overcool protection activates in the chilled or partial frozen mode.	Restart after 3-minutes
	trol		(Control temperature \leq SP-3°C or for 3 minutes)	
	Control error	E207	Defrosting is not completed within 90 minutes	Only alarm display
	ji −	E303	Humidity setting required (SRAM failure)	Only alarm display
	lure	E305	Defrost timer setting required (SRAM failure)	Only alarm display
	fai	E307	Calendar setting required (SRAM failure)	Only alarm display
Ε	ard	E311	Trip-start setting required (SRAM failure)	Only alarm display
alarm	Printed-circuit board failure	E315	PT/CT board failure	Restart after 3-minutes
		E401	Supply air temperature sensor (SS) malfunction	Back-up operation
q		E402	Data recorder supply air temperature sensor (DSS) malfunction	Back-up operation
rta		E403	Return air temperature sensor (RS) malfunction	Back-up operation
ŝta		E404	Data recorder return air temperature sensor (DRS) malfunction	Back-up operation
ĕ		E405	Discharge air temperature sensor (DCHS) malfunction	Only alarm display
Z		E406	Suction gas temperature sensor (SGS) malfunction	Back-up operation
e		E407	Evaporator inlet temperature sensor (EIS) malfunction	Back-up operation
o		E409	Evaporator outlet sensor (EOS) malfunction	Back-up operation
play alone or restartable	alarm	E411	Ambient sensor (AMBS) malfunction	Only alarm display
ay	ala	E413	Low pressure transducer (LPT) malfunction	Back-up operation
lds		E415	High pressure transducer (HPT) malfunction	Back-up operation
Dis	Sensor	E417	Voltage sensor (PT1) malfunction	Only alarm display
	er	E421	Current sensor (CT1) malfunction	Only alarm display
	0	E423	Current sensor (CT2) malfunction	Restart after 3-minutes
		E425	Pulp temperature sensor (USDA1) malfunction	Only alarm display
		E427	Pulp temperature sensor (USDA2) malfunction	Only alarm display
		E429	Pulp temperature sensor (USDA3) malfunction	Only alarm display
		E431	Humidity sensor (HuS) malfunction	Only alarm display
		E433	Cargo temperature sensor (CTS) or box temperature sensor	Only alarm display
			(CBŠ) malfunction	
		E805	Ventilator opening detector error	Only alarm display
	onic onal larm	E603	Suction modulating valve (SMV) malfunction or driver malfunction	Back-up operation
	Electronic functional part alarm	E607	MDS (sheet key) malfunction	Only alarm display
	ng ke	E707	Momentary power failure	Restart after 3-minutes
	Power supply alarm			
	Operation alarm	E807	FA open error when lower ventilator is opened during frozen operation.	Only alarm displayed
	Opel			- • •

Note 1) The alarm LED does not blink when E code alarm is generated. To check if any alarm generates, use alarm indication function in the section "1. Current indication mode" of "3.3.2 Mode operation procedure.
2) In the event error E101, E103, E107, or E109 occurs 10 times, the system will go to 4-hour standby mode.
3) In case of sensor malfunction, the judgment for sensor malfunction does not perform for 3 minutes before the pressure or temperature reaches to the specified value.

3.4.2 Back-up operation at sensor malfunction

	Sensor malfunction	Mode	Back-up content
SS	Supply air temperature	Chilled	The same control is executed by using DSS (optional).
	sensor		In case of DSS malfunction, [RS–2.0°C] is used for control.
			When DSS and RS are faulty, the unit should be stopped.
		Frozen	No influence (continuous operation)
		Defrost	
RS	Return air temperature	Chilled	No influence (continuous operation)
	sensor	Defrost	
		Defrosting	The same control is executed by using DRS (optional).
AMBS	Ambient temperature sensor	All modes	Continuous operation
DCHS	Discharge gas	Chilled	Continuous operation
	temperature sensor	Frozen	Continuous operation
		Defrosting	
EIS	Evaporator inlet	Chilled	Continuous operation
	temperature sensor	Frozen	See the next page
		Defrosting	No influence (continuous operation)
EOS	Evaporator outlet	Chilled	Continuous operation
t	temperature sensor	Frozen	See the next page
		Defrosting	Defrosting start-up:Always permissible
			Defrosting termination: The 90 minute timer count-up or
			when EIS>90°C or RS>set point
SGS	Suction gas temperature	Chilled	Continuous operation
	sensor	Frozen	See the next page
		Defrosting	No influence (continuous operation)
HPT	High pressure transducer	Chilled	Continuous operation
		Frozen	
		Defrosting	Refrigerant charge:No influence
			Refrigerant release:LPT is used for releasing.
LPT	Low pressure transducer	Chilled	Continuous operation
		Frozen	
		Defrosting	Refrigerant charge:HPT is used for charging
			Pump down:Pump down operation is not conducted
HPS	High pressure switch	All modes	No back-up operation
WPS	Pressure switch for water	All modes	No back-up operation
CTP	Compressor thermal protector	All modes	No back-up operation

No.	Evaporator inlet sensor	Evaporator outlet sensor	Compressor suction gas sensor	Back-up operation
	EIS	EOS	SGS	· ·
1	Normal	Normal	Normal	superheat control
2	Normal	Normal	Abnormal	superheat control
3	Normal	Abnormal	Normal	Liquid refrigerant back prevention
3	INUITIAI	Abhornai	nomai	to compressor by EIS and SGS
4	Normal	Abnormal	Abnormal	Expansion valve fixed
4	normai	Abhormai	Abhornai	opening rate control
5	Abnormal	Normal	Normal	Liquid refrigerant back prevention to
5	Abnormal		nomai	compressor by EOS and SGS
6	Abnormal	Normal	Abnormal	Expansion valve fixed
0	Abnormal	Normai	ADHOITHAI	opening rate control
7	Abnormal	Abnormal	Normal	Expansion valve fixed
1	Abrioffiai	Abrioffiai	noimai	opening rate control
o	Abnormal	Abnormal	Abnormal	Expansion valve fixed
8	Abnormal	Abnormal	Abnormal	opening rate control

•Back-up for temperature sensors (EIS, EOS, SGS) at frozen mode (superheat control)

3.5 Battery

3.5.1 Specifications

DECOS III d controller can use Rechargeable battery. It is not possible to exchange the type of battery afterwards.

The battery is positioned on CPU & I/O box in controller box.

Rechargeable battery: DAIKIN original rechargeable battery, type: 6N-600AA-2 (Red wire is (+), Black wire is (-))

3.5.2 Function

This battery is used without main power supply for the following functions.

	1) Display wake up	2) USDA data log	3) Trip data log
Rechargeable battery	0	0	0

 \bigcirc : Available — : Not available

1) Display wake up (Refer to section 3.3.2) page 3-11.

Setting/Display the following items on the LCD display.

<Display>

Temperature on the return air sensor

Temperature on the supply air sensor

<Setting change>

Inside temperature, defrosting interval, dehumidifying set (Optional), Unit ON/OFF

2) USDA data log

USDA sensors data log every 1 hour

Note) When the Alkaline battery is equipped, it must be replaced for a new every PTI, when USDA is used.

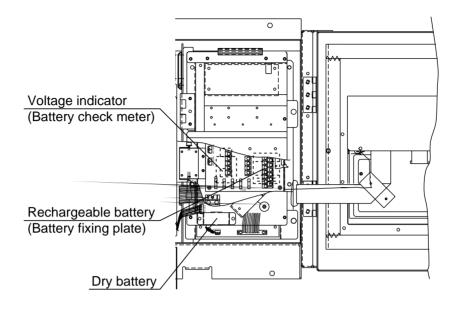
3) Trip data log

Trip data; Setting point, Supply air, Return air, Humidity and time is logged every 1 hour after power off until battery run out. (Min. 3 days)

3.5.3 Battery check

Dry battery: Press S key to confirm the Battery mode workable.

When the power is disconneced.


Rechargeable battery: Press "Battery check meter"

Green: Operatable

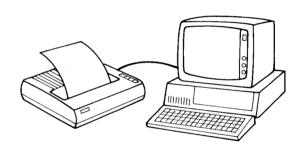
Red: Replace battery

3.5.4 Battery replacement (Rechargeable battery)

First, turn off the power supply to the refrigeration unit. Then, detach the cover of battery and replace the battery. At this time, be sure to use the specified type of battery.

- · A Ni-Cd battery is used. Remove the used battery from the refrigeration unit, and then safely collect and dispose it.
- \cdot Before scrapping the refrigeration unit, be sure to remove the battery from the unit.


3.6 Information interchange with personal computer


The electronic controller DECOS II d has a internal memory function to record the set point temperature, inside temperature, operation mode, occurrence alarm and the report of automatic PTI during transportation in addition to the normal operation control.

Also users can retrieve the logging data and operations condition of the unit and save the information on a personal computer through the serial communication port (personal computer receptacle) provided on the controller front panel. The retrieved data are useful to analyze any problems that occurred during transportation and to prepare various kinds of reports.

Moreover, users can up-load the information such as the container No., cargo name, destination and other information from their personal computer to the controller.

Refer to the Operation Manual for Personal Computer Software for detail.

3.6.1 Data logging

The data logging function is to store operation data which is generated during navigation. There are seven kinds of logging data.

As to Tripdata, its logging interval can select from 15, 30, 60 (default) and 120 minutes. %When F. PTI is executed, the logging interval become default (Refer to 3.9.2.3) %Controller has Max. 2 years capacity at 60 min log interval.

	Data name	Loggin	g data
1	ID data	 Container No. Departure port Set point temperature Set point ventilation flow rate Set point humidity Comment 	 Loading date Load Transit place Final destination Navigation No.
2	Trip data	 Operation mode Supply air temperature (SS) Return air temperature (RS) Inside humidity (optional) Ambient temperature (AMBS) 	 Set point temperature Set point humidity (optional) Data recorder sensor temperature (DSS/DRS) (optional)
3	Alarm	 Alarm output date/time Alarm code 	
4	PTI	SHORT PTI FULL PTI	
5	USDA	 Pulp sensor temperature (USDA Date/time Logging interval is 1 hour. 	#1 to #3)
6	Event	Power ON/OFFH codeD code	 Unit ON/OFF Date/time G-SET ON/OFF
7	USDA+CTS	 Pulp sensor temperature (USDA Date/time 	#1 to #3) and cargo sensor temperature

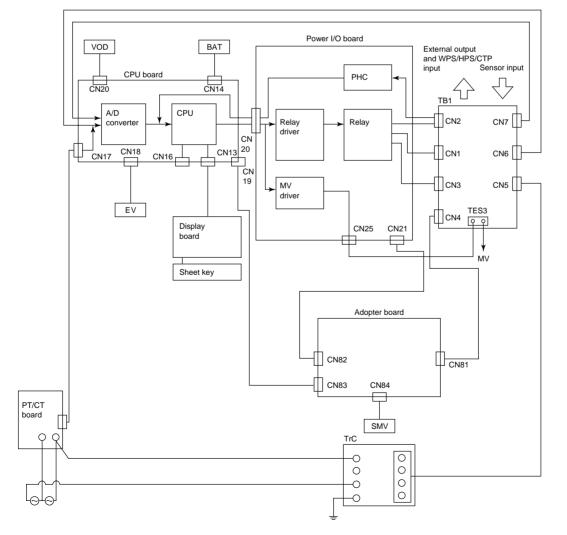
Logged data can be retrieved with the aid of personal computer software. Refer to the Operation Manual for Personal Computer Software for detail.

3.6.2 SOFTWARE CONFIGURATION

\geq	MAIN MENU	SUB MENU	Explanation of functions	Remarks
	LOGGER DATA	TRIP DATA	Data recorded in the logger is read	No information
	DOWNLOAD	USDA DATA	from the controller onto the personal	appears on the
		4-PULP SENSORS DATA	computer (disk or hard disk).	screen at this time.
		PTI DATA	(This operation is called the	
		ALL DATA AFTER	download).	
		TRIP-START		
	CONTAINER I.D.	SET CONTAINER I.D.	The logger header (set point temperature,	Disk
	/HEADER	/HEADER	cargo name, destination and other	→Controller
		-From DISK	information) is changed.	
			 Data previously saved on disk is 	
			transmitted to the controller.	
		CHANGE CONTAINER I.D.	The container No. (container ID)	Input from
		-From Keyboard	set in the controller is changed.	keyboard
		Tioni Reyboard	set in the controller is changed.	Reyboard
		CHANGE CONTAINER	The logger header is changed.	Input from
		HEADER	The logger header is changed.	keyboard
		-From Keyboard		Reybuard
		CHANGE CALENDAR	The internal clock on the	Conversion from
		CHANGE CALENDAR	controller is changed.	personal compute
			 The controller clock is based on GMT 	built-in clock
-			(Greenwich Mean Time)	Decend on diale
		DISPLAY CURRENT	Controller sensor values, operation of	Record on disk
<u>m</u>	& REPAIR	OPERATING DATA	internal relay and opening rates of SMV	is enabled.
5			and EV are displayed on the screen.	
FIELD JOB		DISPLAY CURRENT ALARM	Detected alarms are displayed.	
₩		DISPLAY ALARM LOG	Information of alarm recorded	Record on disk
		DISPERT ALARM LOG	in the logger is displayed.	is enabled.
		DISPLAY	Fluctuation of control temperature	is enabled.
		TEMPERATURE CHART	which has been recorded in the logger	
		TEMPERATORE CHART		
		REPLACE BATTERY	is displayed in a graphic chart. The back-up battery replacement	Cotting can be also
		REPLACE BATTERT		Setting can be also made on the
			day is set and displayed.	
				control panel.
			The pulp sensor (USDA sensor) to	The ice bath
	(3-PULP	USDA SENSORS	be used for low temperature	is used.
	SENSORS)		transportation is calibrated.	
	COLD	DISPLAY TEMPERATURE	Fluctuation of the pulp sensor	
	-TREATMENT	CHART	(USDA sensor) temperature which	
			has been recorded in the logger is	
			displayed in a graphic chart. Summary	
			report of trip data is indicated.	
	4-PULP	CALIBRATION	The pulp sensor (USDA sensor)	The ice bath
I	SENSORS	4-PULP SENSORS	to be used for low temperature	is used.
			transportation is calibrated.	
			Fluctuation of the pulp sensor	
	COLD	DISPLAY		
	COLD -TREATMENT	DISPLAY TEMPERATURE CHART	(USDA sensor) temperature which	
			(USDA sensor) temperature which	

\square	MAIN MENU	SUB MENU	Explanation of functions	Remarks
	MAKE REPORT	TRIP REPORT	Reports are made based on record	
		USDA REPORT	data read from the logger.	
		4-PULP SENSOR		
m		REPORT		
JOB		PTI REPORT		
巴		ALARM REPORT		
OFFICE		MONITOR REPORT		
Б		EVENT REPORT		
	MAKE	SET CONTAINER I.D.	Disk data to change	
	CONTAINER I.D.	/HEADER into DISK	LOGGER HEADER of	
	/HEADER		controller is created.	
SET	CHART MARK	 SELECT JOB 	Environment using personal	
S C	CRT MODEL	 TRIP REPORT 	computer software is set.	
Ē	SET TIME ZONE			
CONFIG	• G.M.T-LOCAL T	ME		

3.7 Inspection procedure for the electronic controller

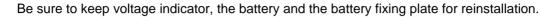

DECOS III d enables the internal data of the controller CPU (RAM data) to be displayed on the monitor of a personal computer by connecting the two with a communication cable. This makes it possible to preform an easy inspection of the controller and diagnose any defect.

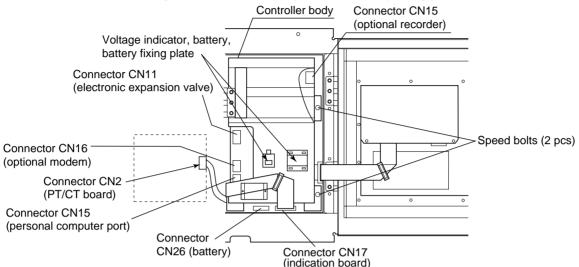
(1) Inspection of sensors

The inspection is carried out by comparing the sensor readings on the controller display with the display on the personal computer. In case the sensor reading is abnormal, the sensor should be replaced with a new one, but be sure to check the sensor for damage as well as the internal harness and its connectors before replacing. (Refer to Appendix for the sensor characteristics.) Page 7-4 and 7-5.

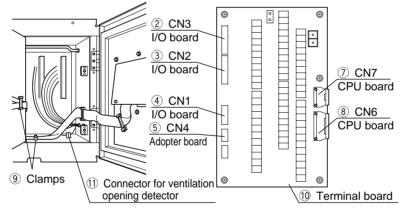
- (2) Inspection of the internal relays of the electronic controller The inspection is carried out by checking the display on the personal computer and the internal relay output (24VAC) on the terminals of terminal board, utilizing the electric tester or test lamp. In case the internal relay malfunctions, the power I/O board should be replaced with a new one, but be sure to check the internal harness and its connectors for damage before replacing.
- (3) Inspection of the Suction modulation valve Suction modulation valve is driven by the PCB adapter. If the Suction modulation valve does not function (i.e. if there is no clicking sound, ever though the control display shows the valve openning and closing), then the PCB adapter should be replaced, but be sure to check the internal harness and its connectors for damage before replacing.
- (4) Inspection of the electronic expansion valve If the electronic expansion valve does not operate (no clicking sound) when the valve opening is changed on the controller indication, the electronic expansion valve should be replaced. However, check on damage of internal harness and poor contact of connector before the replacement.
- (5) Inspection of the cpu board

If the green light on the cpu board is flashing, then the cpu board is working normally.

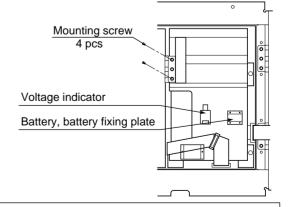

Basic internal wiring diagram of electronic controller


3.8 Controller replacement and initial setting

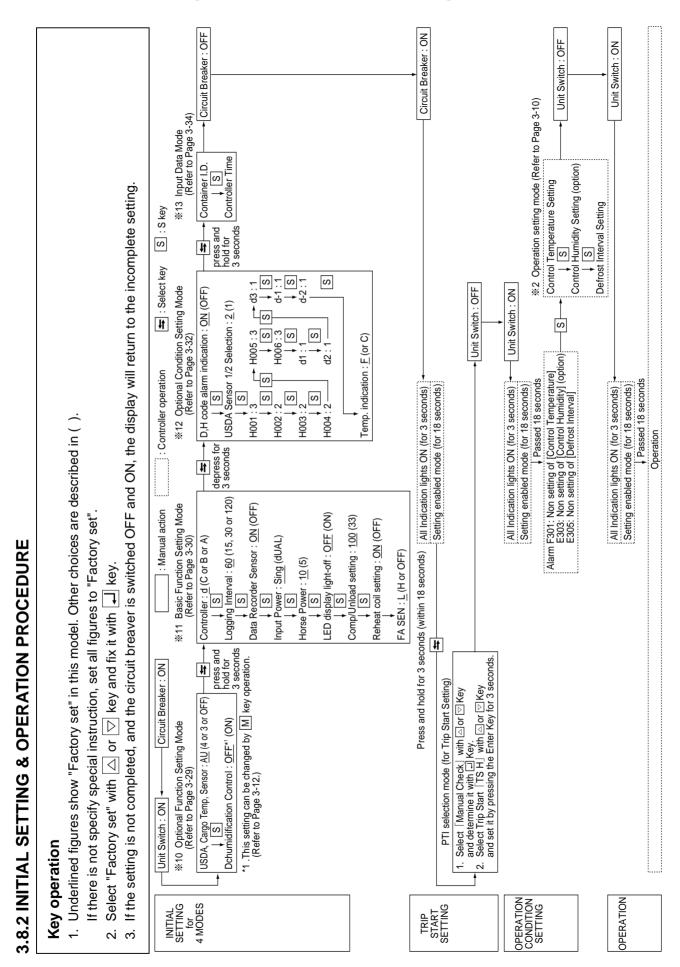
3.8.1 Controller replacement


<Replacement procedure for the controller>

(1) Remove speed bolts (2 pcs) on the controller body, then remove the connector.



- (2) Open the controller body, then disconnect the connectors (2) through (8) and (1) on the terminal board mounting plate (1).
- (3) Disengage clamps (9) fixing the harness.



- (4) Remove screws (2 pcs) fixing the controller, and replace the controller with a new one.
- (5) In the reverse procedure, set the connector, the terminal speed bolts and the mounting screws into the original setup.

Install the battery and the voltage indicator removed from the previous controller before replacement by using the battery fixing plate.

CAUTION Make sure that the connector is firmly connected.

3.9. PTI (Pre-Trip Inspection) AND PERIODIC INSPECTION

The controller (DECOS IId) has the automatic PTI function, which consists of three process of SHORT PTI (referred to as S.PTI hereafter), FULL PTI (referred to as F.PTI hereafter) and MANUAL CHECK (referred to as M.CHECK hereafter)

Mode	Operation description
S.PTI	The components are inspected for abnormalities. Even if any abnormal components are
5.F 11	found, all processes are executed.
	S.PTI + unit cooling capacity inspection are executed. The cooling capacity check is
F.PTI	executed only if any abnormal components are not found with S.PTI. If any abnormality
	is found during the cooling capacity inspection, F.PTI is terminated.
M.CHECK	The functional parts and the operation data can be inspected.

The abnormalities which occur during automatic PTI will be displayed on the controller when the automatic PTI is terminated.

• Refer to section 3.4 for the alarm code checking procedure.

 \cdot Refer to section 6.2 for the alarm code contents.

When automatic PTI is terminated, the result of the PTI can be output as a report with using a personal computer. (Refer to the Operation Manual for Personal Computer Software.)

3.9.1 Inspection item

The periodic inspection and adjustment of components (if required) is recommended to ensure continued successful operation.

The following table shows an example of the inspection plan.

	No.	Inspection item	Inspection content	PTI	2 nd year	4 th year	8 th year
	1	Inspection for physical damage		0	Ó	Ó	Ó
		· · · · · ·	1) Casing frame	0			
			2) Compressor	0			
			3) Condenser fan motor	0			
			4) Evaporator fan motor	0			
	2	Loose mounting bolts	5) Control box	0			
			6) Temperature recorder box	0			
			7) Access panel	0			
			8) Others			0	0
	3	Conditions of panel,		0	0	0	0
	5	hinge and lock		0			
ē	4	Drain pan and drain hose cleaning		0			
ctu			1) Cover packing inspection and replacement	0	0	0	0
itru	5	Control box inspection	2) Loose cable gland		0	0	0
General structure			3) Internal cleaning		0	0	0
Jer		Temperature recorder box	1) Cover packing inspection and replacement	0	0	0	0
Gel	6	inspection	2) Internal cleaning		0	0	0
U	7	Sealing condition of holes through casing frame	1) Air leakage and clearance	0	0	0	0
		Packing inspection and	1) Ventilator cover packing		0	0	0
	8	replacement	2) Unit sealing packing				0
		•	1) Compressor		0	0	0
	9		2) Water-cooled condenser/liquid receiver		0	0	0
		Painted area recondition	3) Solenoid valve (coil cap)			0	0
			4) Casing frame			0	0
			1) Compressor				0
		5	2) Water-cooled condenser/liquid receiver				0
	10	Repainting	3) Condenser fan motor				0
			4) Condenser fan				0
	1	Gas leakage		0		0	0
			1) Inspection of moisture in the refrigerant,				
	2	Refrigerant	and refrigerant charged amount	\bigcirc			
		3	2) Replacement of refrigerant			0	0
	3	Inspection of high pressure	, , , , , , , , , , , , , , , , , , , ,	~		_	_
٦	3	switch operational pressure		\bigcirc			
Refrigerant system			1) Liquid solenoid valve	0			
sy:			2) Economizer solenoid valve	0			
ant		Operation and leakage	3) Injection solenoid valve	0			
Jera	4	of solenoid valve	4) Hot gas solenoid valve	0			
sfriç			5) Defrosting solenoid valve	0			
R			6) Discharge gas by-pass solenoid valve	0			
	5	Operation and leakage of suction modulating valve		0			
		Operation and leakage of					
	6	electronic expansion valve		0			
	7	Compressor	Water entering to compressor terminal		0	0	0

\smallsetminus	No.	Inspection item	Inspection content	PTI	2 nd year	4th year	8 th year
	8	Dryer replacement			Ó	Ô	Ó
c	9	Function inspection and replacement of liquid moisture indicator		0			0
Refrigeration system	10	Conditions of fasteners on the refrigerant pipes and gauge pipes			0	0	0
geratio	11	Condition of thermal insulation of refrigerant pipe			0	0	0
Refriç	12	Evaporator coil cleaning (BY water)			0	0	0
			1) Water-cleaning	0	0	0	0
	13	Condenser coil cleaning	 Steam-cleaning (after pumping down the refrigerant) 			0	0
		Water-cooled condenser	1) Water-leakage inspection		0	0	0
	14	inspection	2) Operation of water pressure switch		0	0	0
	1	Damage of power cable and plug		0	0	0	0
	2	Inspection of conditions of internal wiring			0	0	0
		Terminal looseness	1) Magnetic switch	0	0	0	0
	3	inspection and retightening	2) Electronic controller terminal block	0	0	0	0
		if necessary	3) Terminal block	0	0	0	0
	4	Condition of monitoring receptacle cap		0	0	0	0
	5	Conditions of personal computer receptacle cap		0	0	0	0
me	6	Fuse conditions	1) Burned out or not	0	0	0	0
yste	7		1) Contact point inspection	0			
ical s		Magnetic switch contact	2) Replace the contact on compressor contactor			0	0
Electrical system		point inspection and replacement	3) Replace the contact on compressor fan motor				0
			 Replace the contact on evaporator fan motor 				0
			1) Power cable and plug	0	0	0	0
	8	Electric insulation check	2) Compressor	0	0	0	0
	0		3) Condenser fan motor	0	0	0	0
			4) Evaporator fan motor	0	0	0	0
	9	Starting procedure inspection		0			
			1) Installation conditions of sensor	0	0	0	0
	10	Thermosensor	2) Inspection of sensor and sensor lead for damage		0	0	0
			 Indication error inspection and replacement 		0	0	0
	11	Humidity sensor	 Indication error inspection and replacement 	0			
		-	2) Replacement		0	0	0
	12	PT/CT (voltage and current) indication error inspection			0	0	0
	13	Pressure sensor indication error inspection and replacement			0	0	0

\square	No.	Inspection item	Inspection content	PTI	2 nd year	4 th year	8 th year
			1) Calibration	0			
			2) Sensor error inspection and				
			replacement		0	0	0
			3) Chart drive inspection	0			
	14	Temperature recorder	4) Recording operation inspection	0			
	14	inspection	5) Loose terminal		0	0	0
			6) Chart drive dry battery inspection,	0			
			and replacement	0			
E			7) Check and replacement of pen				0
yste			lifting battery				
Electrical system	15		1) Check and replacement of	0			
tric		Electronic controller	wake-up battery	0			
lect			2) LCD panel replacement			0	0
ш	16	Evaporator fan motor	1) Speed switchover	0			
			2) Revolution direction	0			
			3) Motor replacement				0
	17	Condenser fan motor	1) Rotating direction	0			
			2) Motor replacement				0
	18	Evaporator fan	1) Deformation and damage	0			\circ
			inspection	0			
	19	Condenser fan	1) Deformation and damage	0	0		\circ
			inspection				
	1	Check for abnormal noise and vibration during operation		0			
	2	Temperature control	1) 0°C operation	0			
Others	2	function	2) –18°C operation	0			
l dt	3	Defrosting function		0			
	4	Unit water-cleaning		0			
	5	Ventilation opening detector function	1) Calibration	0			

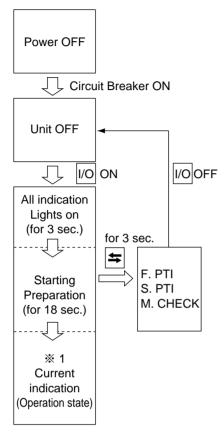
* The service life of the wake-up battery is approx. one year (alkali battery). For USDA transportation, replace the battery with a new alkali battery when PTI is performed.

3.9.2 Automatic PTI (Pre-Trip Inspection)

• The automatic PTI function is provided so as to ensure correct inspection and to shorten inspection time.

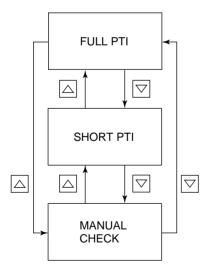
(1) Appearance inspection of unit

- ① Physical damage
- 2 Casing insulation through hole area
- ③ Drain hose (dust and clogging)
- 4 Power cable and plug damage
- 5 Condition of refrigerant piping fasteners.
- 6 Condition of each sensor installation
- $\ensuremath{\textcircled{}}$ Loose mounting sections
 - · Bolts and nuts ----- Casing frame, compressor, fan motor control box and temperature recorder box
 - · Cable glands ----- Control box
- ⑧ Conditions of control box cover packing (water-proof) and temperature recorder box cover packing (water-proof)
- (9) Magnetic contactor contact point for burning out.
- (2) Inspection before unit operation
 - ① Gas leakage inspection


② Power voltage insp	pection		(Automatic PTI range)		
(3) Starting inspection ① Starting	and operation inspection of safety device and control equipment Inspection whether the starting procedure is proper or not Inspection for abnormal noise and abnormal vibration Moisture in the refrigerant This is reinspected at the end of PTI. Rotating direction of fan motor.				
② Safety device	HPS	Measurement of fan motor.	of the actuating pressure by stopping the condenser		
③ Control equipment	E Soler EFM EV, SM		Inspection of operation (open and close) and leakage Speed switchover and rotating direction Inspection of operation (open and close) and leakage		
(4) Operation in each					
 Pull-down → 	0°C		Pull-down time, voltage and current		
② Chilled control	0°C	Electronic temperature recorder calibration	Return, supply air temperature differential, voltage and current		
③ Defrosting			Defrosting time		
④ Pull-down →	–18°C		Pull-down time, evaporator fan motor speed switchover		
5 Frozen control	–18°C	Electronic temperature recorder calibration	(Temperature differential and rotating direction) ON/OFF, voltage and current		
			Remained frost inspection		

(5) PTI report preparation

3.9.2.1 PTI SELECTION MODE


The test mode of FULL (F.PTI), SHORT PTI (S.PTI), and MANUAL CHECK (M.CHECK) can be selected.

<Mode selection procedure>

<Operation procedure>

Whenever the \bigtriangleup or \bigtriangledown key is pressed, the indication changes.

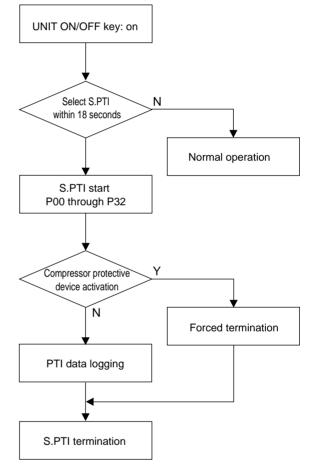
To start FULL PTI, press the LCD.

To start SHORT PTI, press the LCD.

•When the key is pressed while "M-CHECK" is displayed on the LCD, the manual check selection mode is set.

The detail of the manual check selection mode is described in the following pages.

	Water cooled operation	Air cooled operation	Ambient temperature condition	
S. PTI	×	0	-10° C < Ambient temperature $\leq 43^{\circ}$ C When the ambient temperature is above 43° C or below -10° C, the result may be abnormal.	
F. PTI	×	0	-10°C ≤ Ambient temperature ≤ 43°C When the ambient temperature is above 43°C or below -10°C, the following alarm will be indicated J501: Out of ambient temperature specified conditon.	
M. CHECK	0	0		

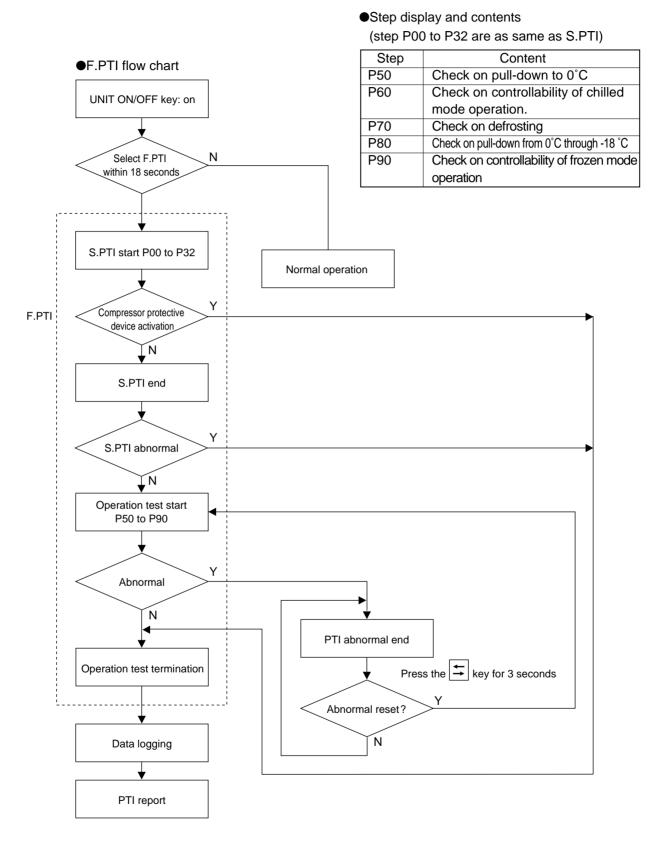

• Automatic PTI enable conditions

3.9.2.2 Short PTI (S.PTI)

Step display and content

· · ·			
Step	Content		
	Basic data record (container No., date,		
P00	time, compressor integrated run-hour,		
	ambient temperature)		
P02	Alarm check on all sensors		
P04	Power conditions (voltage and frequency) check		
P05	Compressor start running check		
P06	Actuating pressure check at OFF and		
FUO	ON of High pressure switch (HPS)		
P08	Pump-down check		
	Solenoid valve leakage check		
	•Liquid solenoid valve (LSV)		
	 Injection solenoid valve (ISV) 		
P10	•Hot gas solenoid valve (HSV)		
	•Defrost solenoid valve (DSV)		
	•Discharge gas by-pass (BSV)		
	•Economizer solenoid valve (ESV)		
	Supply and return air sensor (SS and RS)		
P12	accuracy check		
	Pressure sensor (HPT and LPT)		
P14	accuracy check		
	Evaporator fan high and low-speed		
P16	operation check		
P18	Start up		
FIO	•		
P20	Economizer solenoid valve (ESV)		
	opening or closing check %1 %2		
P22	Discharge gas by-pass solenoid valve		
	(BSV)opening or closing check ×2		
P24	Defrost solenoid valve (DSV)		
	opening or closing check		
P26	Standard pull-down operation		
P28	Suction modulating valve (SMV) operation		
120	check		
P29	Electronic expansion valve (EV)		
F 23	operation check		
D20	Injection solenoid valve (ISV) opening		
P30	or closing check 2		
D 22	Hot-gas 3-way solenoid valve (HSV) and reheat		
P32	coil solenoid valve (RSV) opening or closing check		

• S.PTI Flow chart operation



%1 If the ambient temp is -10°C or lower, the function check of the solenoid valve cannot be preformed correctly, short circuit the terminals 121 and 102 on the terminal board, and check the operation of the solenoid valve.

%2 If the difference between ambient temperature and return air temperature is 15°C or higher, these steps will be skipped.

3.9.2.3 Full PTI (F.PTI)

F.PTI consists of S.PTI and operation tests.

IMPORTANT

When Full PTI is executed, the following settings are reset to default.

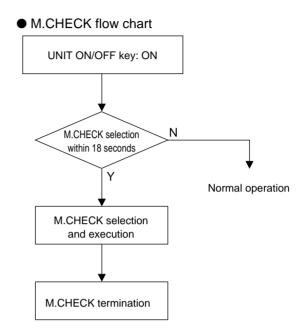
- ① Setting temperature : Previous setting temperature
- 2 Defrost interval : 6 Hours
- ③ Log interval : 60 minutes
- ④ Dehumidification : off
- ⑤ G set : off

3.9.2.4 Alarm list during PTI (Pre-Trip Inspection)

The alarm during automatic PTI are concerned with PTI inspection items in addition to those during normal operation.

The alarms at automatic PTI are indicated in J ***., being separated from those during normal operation.

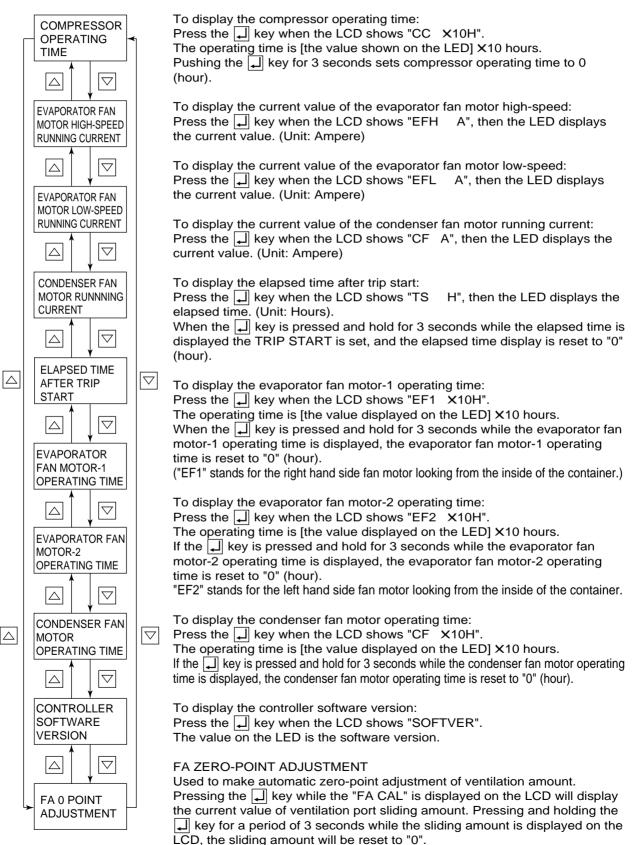
There are some alarms which are not displayed on the control panel, however, they can be checked referring to the PTI report.


Check NO. (LED display)	Check content	Alarm Indication (LED display)	Alarm content	S.F	PTI	F.PTI	Remarks
P00	Basic data	No indication	Check basic-data	Î		1	
P02	All sensor	Same as normal operation	Check basic-data				
P04	Power supply	No indication	Check basic-data				
P05	Starting	J051	Compressor malfunction				
P06	HPS	J061	Abnormal OFF value				
	"	J062	Not recovered (Not reset)				
	"	J064	High pressure does not rise.				
	"	J065	High pressure does not drop.				
P08	Pump-down	J081	Long pump-down				
P10	Liquid solenoid valve	J101	Valve leakage				
P12	RS, SS accuracy	J121	Sensor deterioration				
P14	HPT, LPT accuracy	J141	Sensor deterioration				
P16	Evaporator fan motor	J161	Evaporator fan motor malfunction				
P20	Economizer solenoid valve	J201	Economizer solenoid valve malfunction				
P22	Discharge gas by-pass solenoid valve	J221	Discharge gas by-pass solenoid valve malfunction				
P24	Defrost solenoid valve	J241	Defrost solenoid valve malfunction				
P26	Operation	No indication	Judged with P28				
P28	Suction modulating valve	J281	Suction modulating valve does not activate				
P29	Electronic expansion valve	J291	Long pump-down				
P30	Injection solenoid valve	J301	Injection solenoid valve malfunction				
P32	Hot-gas solenoid valve	J321	Hot-gas solenoid valve malfunction				
	Reheat coil solenoid valve	J322	Reheat coil solenoid valve malfunction		,		
P50	Pull-down cooling capacity	J501	Out of ambient temperature conditions				
P50	0°C control	J502	Long pull-down time				
P60	0°C control	No indication					
P70	Defrosting	J701	Out of starting conditions				
		J702	Long defrosting time				
P80	Pull-down cooling capacity	J801	Long pull-down time				
P90	–18°C control	No indication				↓	

Refer to chapter 6.3 for more information.

3.9.2.5 Manual check (M.CHECK)

Since the components are operated individually differing from S.PTI and F.PTI, the steps can be respectively selected and executed. However, any error occuring during execution of M.CHECK will not be included. Turn the UNIT ON/OFF key off to terminate the M.CHECK.

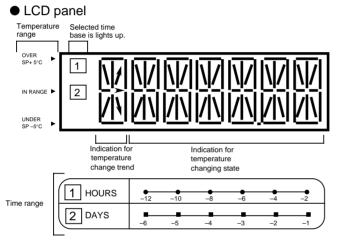

 Step indication and contents 			
Step	Indication content		
(indicated on the LCD)	(indicated on the LED)		
FA CAL	Fresh air 0 point adjustment		
	(calibration)		
CC X10H	Compressor integrated run-hour		
EFH A	Running current value of evaporator		
	fan motor high-speed running		
EFL A	Running current value of evaporator		
	fan motor low-speed running		
CF A	Running current value of condenser		
	fan motor running		
тѕ н	Elapsed time after trip start		
EF1 X 10H	Evaporator fan motor 1 run- hour		
EF2 X 10H	Evaporator fan motor 2 run- hour		
CF X 10H	Condenser fan run- hour		
SOFTVER	Controller software version		

MANUAL CHECK SELECTION MODE

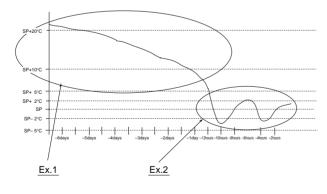
The LED displays the values of following items:

Compressor operating time, Evaporator fan motor high-speed running current, Evaporator fan motor low-speed running current, Condenser fan motor running current, Battery life, Horse power, Elapsed time after trip start, Evaporator fan motor running time, Condenser fan motor running time, and Controller software version.

3.10. CHARTLESS FUNCTION

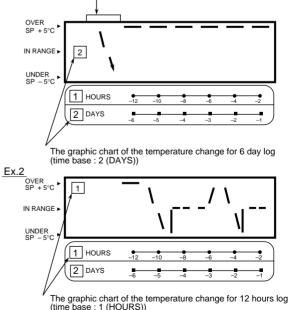

The controller provides the temperature recorder function. This function, displays the control temperature logging data during operation on the LCD panel in a simple graphic chart so that the data can be confirmed easily. (Chart indication function)

The chart, temperature and alarm record scroll indication are based on the control sensor data (SS/RS). When the data recorder sensors (DSS/DRS) are optionally provided, the chart indication is based on the data recorder sensor data preferentially.


3.10.1 Chart indication mode

The temperature record data is indicated in a graphic chart on the LCD panel in the chart indication mode.

- The displayed log period is selected from 12 hours (1 HOURS on the time base) or 6 days (2 DAYS on the time base).
- The displayed intervals are 2 hours for 12 hours log (1 HOURS) and one day for 6 days log (2 DAYS).
- The indication of the data during the defrosting is flickered, and the indication of the other chart data is lit on.



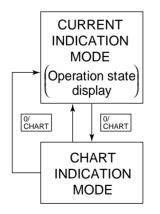
• Example of chart indication

Ex.1

The arrow indicates the temperature change trend when all segments are in the same temperature range.

•Displaying temperature change trend:

· The temperature change trend is shown in the leftmost LCD.


· However, this display is shown only when all segments are in the same temperature range.

Trend indication	Condition
Temperature rise trend	The latestthe oldestdata on the-data on the-chartchartchart(ALARM indication setting)
Temperature stable tendency	The latestthe oldest data on the chart< set point of H001or
	the oldestThe latestdata on the-data on the-chartchart
Temperature fall tendency	(the oldest The latest data on the – data on the chart chart) > set point of H001

% According to setting point of H001, trend indication changes.

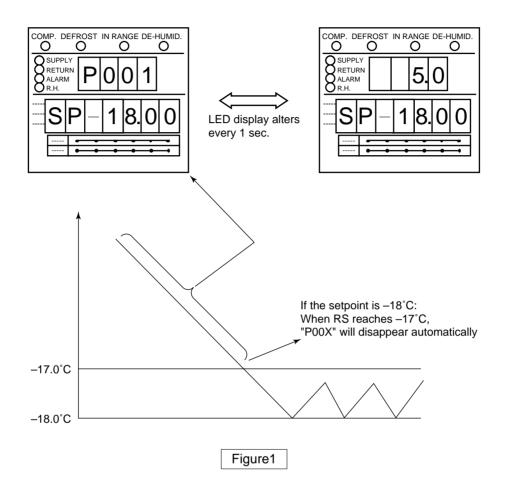
Refer to page 3-32 optional condition setting mode for the H001 setting procedure.

< Operation procedure >

To shift to the chart indication mode, press the $\binom{0}{CHART}$ key while the unit is in the current indication mode.

In the chart indication mode, the LCD displays a simple graphic chart. The ordinate at the left side of LCD screen for temperature base and the abscissa at the bottom of LCD for time base are indicated. The No. indicated at the time base is the same as the No. on the left most of the

LCD, which indicates the simple graphic chart is of 12 hours log or 6 days log indication.


Select the base to be uses using the \bigtriangleup or \bigtriangledown key.

When the $\binom{0}{CHART}$ key is pressed, the unit goes back to the current indication mode.

3.10.2 P code (Pull down time indication)

The control temperature and pull-down time are indicated alternately during pull-down operation. When the pull-down is completed, the P code will be deleted.

P001: Lasts the pull-down for 1 hour. /P002: 2 houes passed since pull-down started.

3.10.3 Chartless code display function

The chartless code represents the coded inside air temperature.

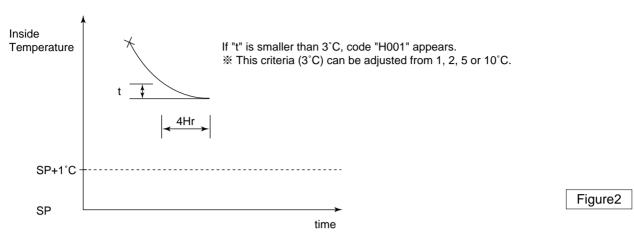
Select "ON" of the chartless code setting to indicate the code on the LED.

- For the chartless code setting, refer to the "optional conditions setting" on the page 3-29.
- P code: Indicates the pull-down time.
- \cdot H code: Indicates the abnormal temperature records.
- · d code: Indicates the operation history.

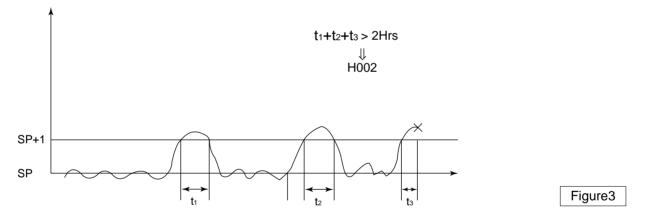
3.10.3.1 List of chartless code

C: chilled mode, F: Frozen mode, PF: Partial frozen mode

	Code	Description	Operation mode	Figure
	H001	The alarm is displayed when the control temperature does not decrease by $(3^{\circ}C)$ or more for every 4 hours during pull-down operation.	C, F, PF	2
ure record	H002	2The alarm is displayed when the total out-of- in-range reaches 2 hours.02(Count is not performed during defrosting.)0		3
	H003	The alarm is displayed when the integrated time of state "below SP-1°C" reaches 2 hours.	С	4
emperati	H004	The alarm is displayed when the integrated time of state "below SP-2°C" reaches 2 hours.	С	4
Abnormal temperature record	H005	The alarm is displayed when the control air temperature is Out-of -In- Range and defrosting was performed successively three times while the control air temperature does not return to in-range.	C, F, PF	5
	H006	The alarm is displayed when the integrated time of difference 2 °C or more between control sensor data and record sensor data reaches to one hour or more.	C, F, PF	6
	d3XX	When the total time above set point +3°C reaches 1 hour, the code "d301" will be displayed.	C, F, PF	7
	d2XX	When the total time above set point +2°C reaches 1 hour, the code "d201" will be displayed.	C, F, PF	7
Opreration history	d1XX	When the total time above set point +1°C reaches 1 hour, the code "d101" will be displayed.	C, F, PF	7
preratic	d–1X	When the total time below set point –1°C reaches (1 hour), the code "d-11" will be displayed.	C, F, PF	7
	d–2X	When the total time below set point –2°C reaches 1 hour, the code "d-21" will be displayed.	C, F, PF	7
	PXXX	XXX: When the total pull-down time reaches one hour, an indication XXX=001 appears.	C, F, PF	1

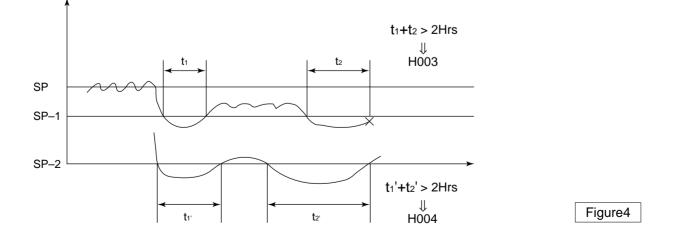

Note 1) The encircled setting can be changed.

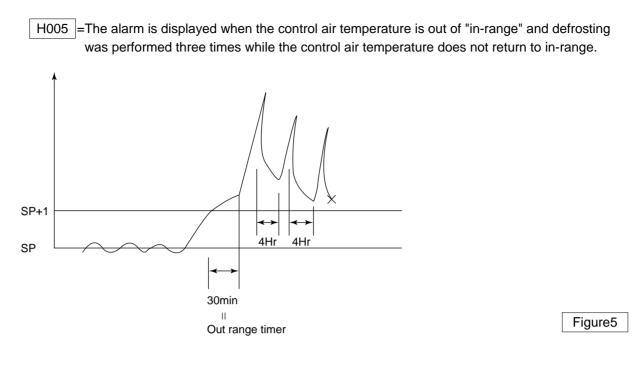
Note 2) To delete the H code or d code, press the 🖵 key for 3 seconds during the relevant code indicated.


Note 3) H code and d code are deleted when turn off the power supply for 3 days.

3.10.3.2 H-code

H001 =The alarm is displayed when the control temperature does not decrease by $(3^{\circ}C)$ or more every 4 hours during pull-down operation.




H002 =The alarm is displayed when the total time out of "in-range" reaches 2 hours. (Counting is not performed during defrosting).

H003 =The alarm will be displayed when the total time below setpoint -1° C reaches 2 hours.

H004 =The alarm will be displayed when the total time below setpoint –2°C reaches 2 hours.

H006 =Alarm is displayed when the temperature difference between the control sensor and record sensor is 2°C for 1 hour, or more.

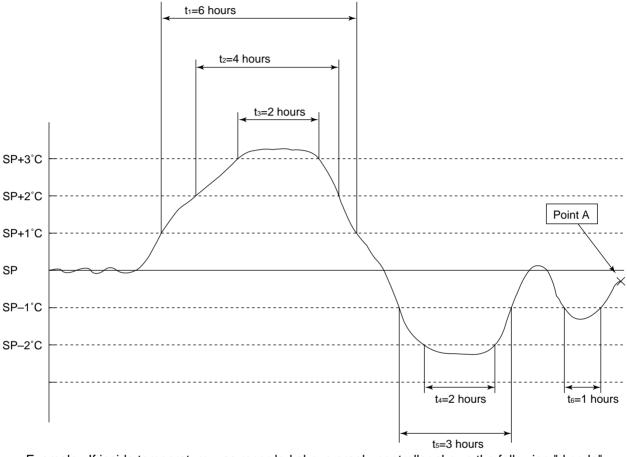
Supply air sensor (SS)

Data recorder for supply air (DSS)

|DSS–SS|>2°C→ H006

Figure6

3.10.3.3 d-code:


The d-code shows the current operation state of the unit.

Example d101:

• This code "d101" will be displayed when the total time above set point +1°C reaches 1 hour.

The code "d102" will then be displayed when the total time above set point +1°C reaches 2 hours. **Example d-21**:

- This code "d-21" will be displayed when the total time below set point -2°C reaches 1 hour.
 - The code "d-22" will then be displayed when the total time below set point -2° C reaches 2 hours.

Example : If inside temperature was recorded above graph, controller shows the following "d code" when user check the code at "point A"

- d106 (above setpoint +1°C for 6 hours)
- d204 (above setpoint +2°C for 9 hours)
- d302 (above setpoint +3°C for 2 hours)
- d-22 (below setpoint –2°C for 2 hours)
- d-13 (below setpoint –1°C for 3 hours)
- d-11 (below setpoint -1°C for 1 hour)

Figure7

3.11 Communication modem

DECOS III d controller has function to transmit operation data through power line, if slave modem (Optional) is provided in control box. (Refer to Control box in 2.2.3)

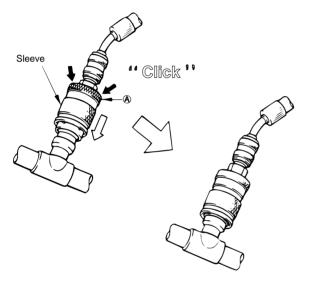
The slave modem shall be complied with ISO10368. The following items can be monitored and/or commanded via master modem: (*1)

	Item	Description	
1	Inquiries (Remote monitoring)	 Inside temperature and humidity Set point temperature Defrosting interval Container No. Logger header information Alarm Operation mode 	● Sensor data ● Trip data ● Alarm data
2	Commands (Remote control)	 Set point temperature changing Defrosting interval changing Manual defrosting initiation 	 Container No. changing Unit ON/OFF changing Header information changing

(*1) According to the relationship among slave modem, Master modem and controller, items which can monitor and/or command are different. Please contact DAIKIN sales office if you have a specific item to monitor/command.

4. Service and maintenance

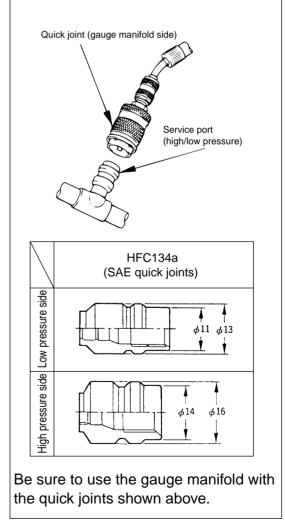
4.1 Maintenance service

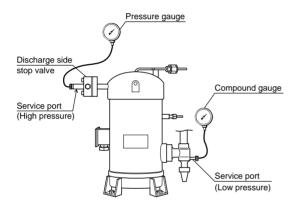

4.1.1 Collection of refrigerant

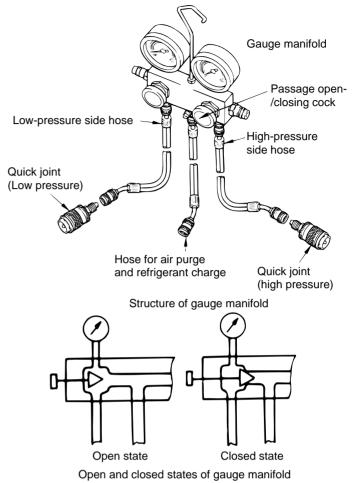
- 1)When release the refrigerant from the refrigerant system, be sure to use a refrigerant recovery unit to protect the ozone layer around the earth from depletion.
- ②Observe strictly all the environmental laws relating with to the country where the repair service is conducted.

4.1.2 Gauge manifold

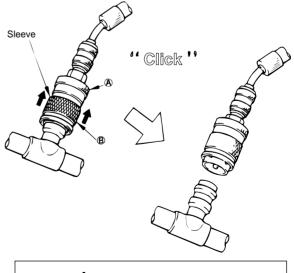
(1) Attaching the gauge manifold


Place the quick joint against the service port and push it at section (a) until it clicks.



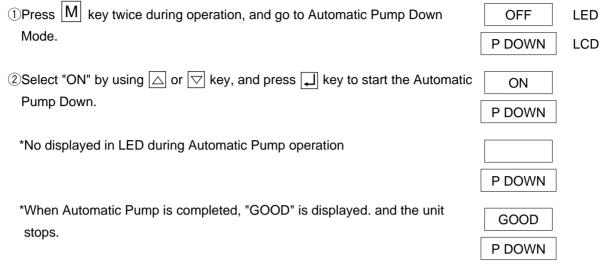

- 1. Use the pressure indicating function of the controller to check the working pressure as much as possible instead of using the gauge manifold in order to prevent foreign particles or moisture from mixing into the refrigerant system.
- Do not use any of the pressure gauge, gauge manifold, charge hose and charging cylinder which have been used for CFC12 in order to prevent refrigerant or refrigerant oil of a different kind from mixing. Use the exclusive tools for HFC 134a.

The service port of quick joint type is provided to make improved handling. %Quick joint system

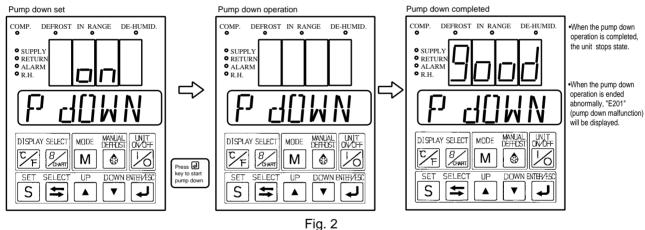

- •Caution on the service work
- (1)Be sure not to bend the refrigerant pipe when pushing the quick joint during connection work.
- ②If the installation fails due to movement of the sleeve, try it again after returning the sleeve to the original position.
- ③Set the discharge and suction stop valve handle at the half open (neutral position).
- (4) The remaining pressure in the charge hose may cause installation failure. In this case, try it again after relieving the pressure in the hose.

(2) Removal of gauge manifold

Holding the quick joint at (A), pull the section B (sleeve) upward and remove the quick joint from the service port.



Be sure to attach the cap to the service port after the removal of the manifold.


4.1.3 Automatic Pump Down

An automatic pump down system is applied to the unit to prevent the unit from extra decrease of low pressure due to pump down operation or burning of scroll compressor due to a close stop valve. (1) Controller operation

3 Turn the UNIT ON/OFF switch off.

○ Controller display

After the automatic pump down operation, conduct the following jobs.

①Replacement of drier

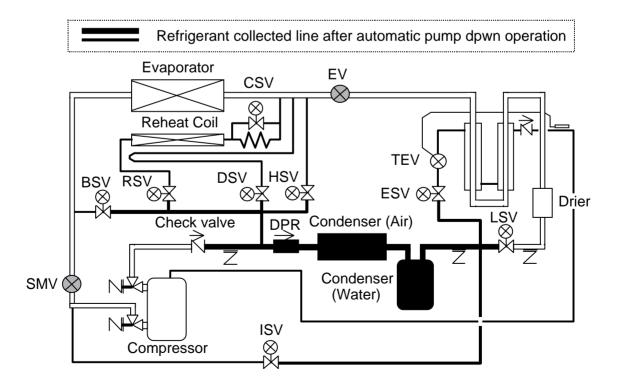
As soon as the automatic pump down operation is complete, replace the drier in order to prevent air from entering the drier inlet/outlet piping. (Refer to 4.2.7 for detail.)

2 Recovery of refrigerant

Conduct the automatic pump down operation in advance and, then, recover the refrigerant.

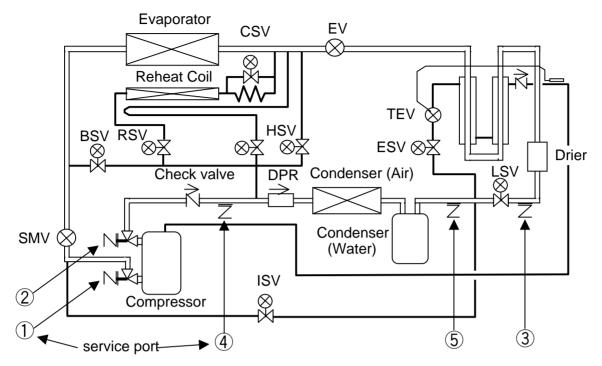
(Refer to 4.1.4(2), (3) for more detail.)

③Refrigerant charge


Operate Automatic pump down when the specific refrigerant amount can not be charged due to the pressure balance.

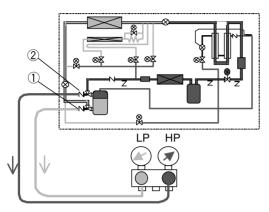
(Refer to 4.1.4(4) for more detail.)

(2) Automatic pump down operation


Once the automatic pump down is started, all of the service works from refrigerant collection into the receiver, to the equalizing in suction piping system, can be executed automatically. When "Good" is displayed, service works such as replacing the dryer, etc. can be conducted without any other operation.

	1	2	3	(4)	5
	[Preperation]	[Pump do	[Pump down-Twice]		[Termination]
	Turn on	(2)→(3)-	►2→3	equalizing]	EV full close
	Automatic pump	Pump down	Compressor	Increase	
	down.	start	continues to	pressure to 0	
			stop for 20	\sim 300Kpa in	Termination
			seconds.	low pressure	
		Compressor		side.	
	Normal operation	stops			GOOD
	for 1 minute.	at LP≦–55kPa			
COMP.	ON	ON	OFF	OFF	OFF
LSV	ON				
EV	ON	ON	ON	ON	ON (full close)
SMV	ON	ON	ON	ON	ON
ESV		ON→OFF			
DSV					
HSV				ON (1st)	
BSV					
ISV				ON (2nd)	
CSV					

4.1.4 Refrigerant Recovery and Charge


Schematic diagram

Service w	ork	Service port	Remarks
	High pressure	2	Take care that the high pressure at the port ④ & ⑤ will be keeping for a while after the unit
Pressure Check	Low pressure	1	stops. (4 & 5 are in closed line between check valve and LSV.)
	[1] Refrigerant	5	Recover refrigerant from port (5) after operating Automatic Pump-Down first.
	Recovery	4 & 5	Recover completely refrigerant left in the unit port ④ & ⑤.
Refrigerant Charge	[2] Vacuum & Dehydration	4 & 5	After recovering, vacuum from port ④ & ⑤. *BSV,DSV,HSV & ISV are reversible in flow. *The connection at port ④ is same size as at ① for low pressure .
(R134a : 5.4Kg)	[3] Liquid charging	(5)→(3)	After cavuuming, charge liquid refrigerant from (5) first and then from (3). If not reached to the specified amount 5.4kg,
		3	 go to next below. 1. Operate Automatic Pump-Down first and stop it using ON/OFF switch when the compressure stops during the Auto PD. operation. 2. Charge liquid refrigerant from port ③.

(1) Operation Pressure Check

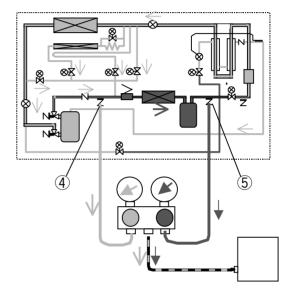
Check high pressure from the service port ② on the compressor discharge. Check low pressure from the service port ① on the compressor suction. Then stop valves is half open.

(2) Recovery non-condensable gas

If air or other non-condensable gas exists in the refrigerant circuit, it is accumulated in the condenser, which raises pressure in the condenser abnormally high and reduces the heat transfer ratio of the condenser surface resulting in a decrease of the refrigerating capacity. It is, therefore, very important to remove non-condensable gas.

If the discharge pressure is abnormally high and does not return to the normal pressure, inspect if air or any other non-condensable gas exists by the following procedure.

•Conduct automatic pump down operation (see page 4-3) and stop the unit after collecting the refrigerant into the liquid receiver.


Run the condenser fan by using the condenser fan check (see page 3-56) in the manual check functions, and wait untill the condenser cooling air inlet/outlet temperatures become equal. If there is any difference between the saturated pressure corresponding to cooling air temperature and condensing pressure, then non-condensable gas exists. In this case, recover non-condensable gas as stated below.

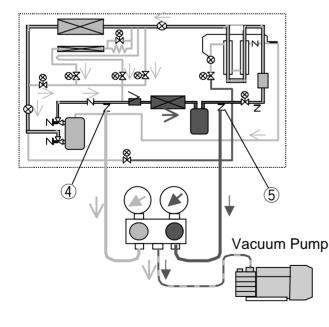
- ①Conduct automatic pump down
- ②Then collect the gas from the service port
 - 2 on the compressor discharge side.

③Reading the pressure gauge, collect the non-condensable gas repeatedly until condensing pressure equals saturated pressure.

(3) Refrigerant Recovery

- ①Operate Automatic Pump Dpwn.
- 2 Recover refrigerant from port 5.
- ③Recover completely refrigerant left in the unit from ports ④ & ⑤.

(4) Vacuum-dehydrating, and refrigerant / charging

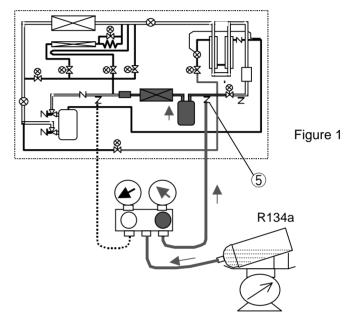

If all the refrigerant has leaked out and air is intermixed in the refrigeration circuit, remove the cause of trouble and carry out vacuumdehydrating. Then charge the specified amount of refrigerant.

[Required tools]

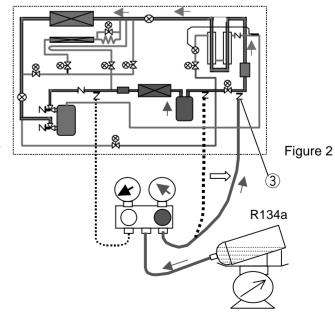
- 1. Refrigerant cylinder (content of 20kg) equipped with joint for HFC134a
- 2. Gauge manifold with quick joints
- 3. Weighing scale (up to 50kg)
- 4. Vacuum pump

(a) Vacuum dehydrating

After recovering, connect the vacuum pump to the service ports ④ and ⑤ at the liquid receiver outlet piping and discharge pressure regulating valve inlet, and then vacuum up to 76cmHg. Disconnect the vacuum pump, holding the refrigerant circuit in the vacuum state. However, if air enters in the refrigerant circuit, vacuum up the circuit to 76cmHg and then vacuum the circuit for another 2 hours or more.



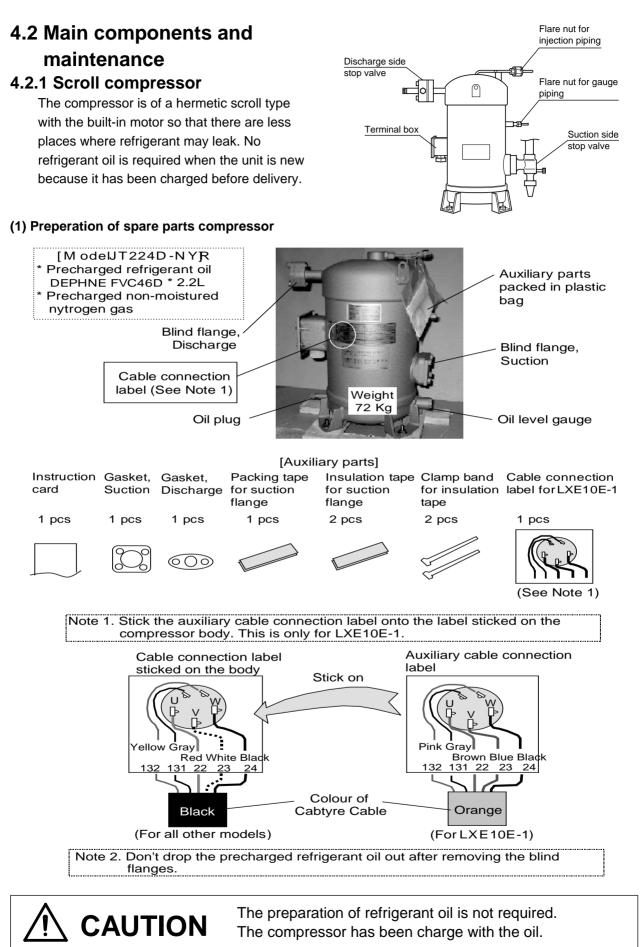
(b) Cylinder weight recording


Place a refrigerant cylinder on the weighing scale, and record the weight of the cylinder.

(c) Charging of liquid refrigerant

1.After vacuum & dehydration, charge the liquid refrigerant from port 5.
(Aprrox. 50% of the specified amount will be charged.)

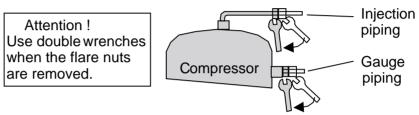
2.Replace the manifold gauge hose to port ③ and add the liquid refrigerant.Then if it reached to the specified amount close the cock of the refrigerent cylinder.



If it is not reached to the specified amount due to the pressure valance, close the cock of the ref. cylinder and go to next 3 & 4.

- 3.Operate Automatic Pump Down first.
 When the compressor stops (%) during the operation, end the Auto. P. D. operation using Unit ON/OFF switch.
 (% The compressor stops twice during the Auto. P. D. operation. It is possible to end either at 1st stop or at 2nd stop.)
- 4.Open the cock of the ref. cylinder and add the liquid refrigerant from port ③. Then if it reached to the specified amount close the cock of the ref. cylinder.

Carry out the operation check after the replacing and charging of refrigerant, then replace the drier.


(2) Removal of compressor

Recover refrigerant

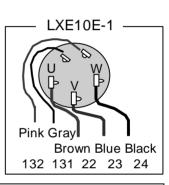
- 1. Recover the refrigerant from service port ④ on discharge line and ⑤ at receiver/water cooled condenser outlet. (Refer to the section 4.1.4 Refrigerant Recovery and charge)
- 2. Close the discharge and suction side stop valves on the compressor.
- Disconnect 3. Switch off the power.
- cables and 4. Open the terminal box cover and disconnect the cables.
- mounting bolts 5. Remove the mounting bolts.

Disconnect pipings

6. Remove the flare nuts for the injection piping on the compress head and gauge piping on the body.

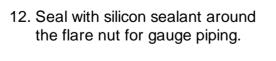
- 7. Remove the insulation tape fixed on suction flange and discha flange.
- 8. Remove the bolts for suction and discharge flange.

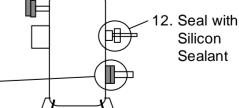
(3) Installation of compressor


Connect pipings and fix mounting bolts

- 1. Before connecting pipings, insert and screw in the mounting bolts slightly.
- 2. Tighten the flare nuts for the injection piping and gauge piping on the body.
- 3. Fix the suction and discharge flanges using with the auxiliary gaskets and the bolts.
- 4. Tighten the mounting bolts.

Tightening torque 257 Kgf.cm (25.2 N.m) 435 Kgf.cm (42.7 N.m)

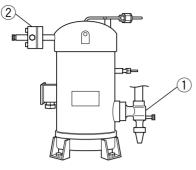

 Connect cables
 5. Check that stick the auxiliary cable connection label for LXE10E-1 is sticked onto the label for others on compressor body. This is only for LXE10E-1.


6. Connect the cables to the terminals.

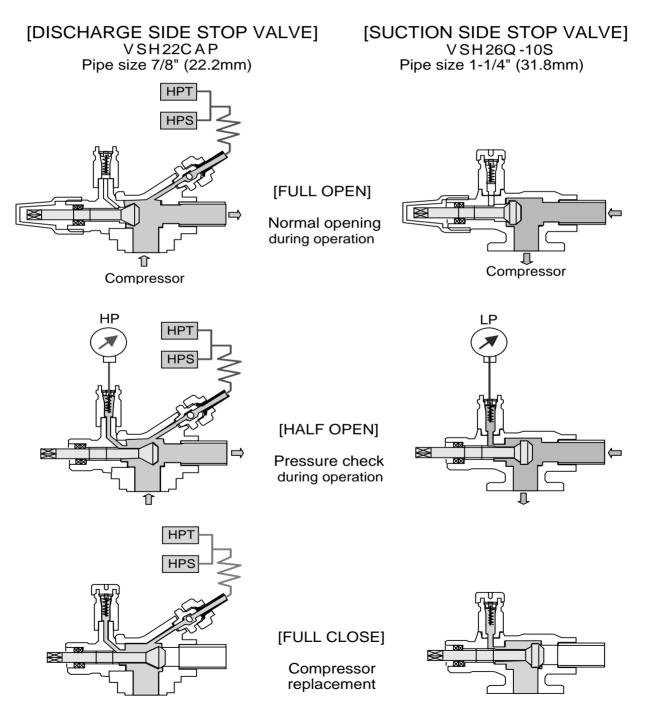
Attention ! Pay the attention to the cable connection. Incorrect wiring may run the compressor in wrong direction and may cause burn out.

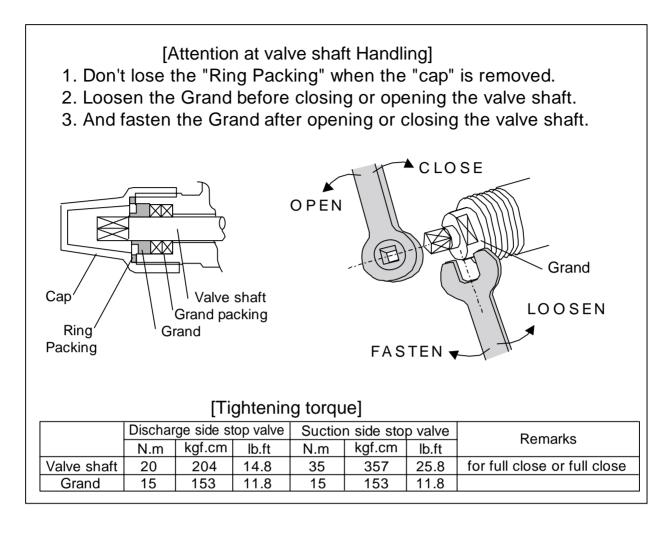
- 7. Open the discharge and suction side stop valves.
- 8. Vacuum and dehyadrate from service port (4) and (5).
- 9. Then charge the refrigerant from service port (5) and (3).
 (Refer to the chapter 4.1.4 Refrigerant Recovery and charge)
- 10. Check gas leakage especially at sunction/discharge flanges and flare nuts for injection piping/gauge piping.
- 11. Fix the auxiliary insulation tape and fix the auxiliary packing tape using clamp band to the sunction flanges.

11. Fix the auxiliary insulation tape


refrigerant

Charge

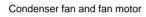

(4) Removal of excess refrigerant oil after compressor replacement The oil plug, oil level gauge and "Removing oil • When the compressor is replaced to spare label" are fitted on the spare parts compressor. parts compressor, remove the excess refrigerant oil in the following procedure. 마 Removing oil lavel 4 ∄ oil plug ~ -THEC oil level gauge Preperation 1. First check again whether the discharge/suction side stop valves are opened and the cable connection at terminal is correct. Connect gauge manifold hoses to the service ports on discharge /suction side stop valves. 3. Opeate the unit for about 5 minutes and stop it. Return the oil 4. Operate the S-PTI (Short PTI) and stop at step of "P10". to the comp-(1) Set the ON/OFF switch to ON ressor (2) Go to PTI mode by pressing "Select" key immdiately for 3 seconds after all LED lighting OFF. (3) Sellect S-PTI using " \triangle or ∇ " key and press "Enter" key, and S-PTI starts. (4) Stop the unit with ON/OFF switch when P10 is displayed on the LED. <Function of step P06 & P08 before P10> *P06 (HPS check) *P08 (Pump down check) When the high pressure rises, The refrigerantcontained in the circuration rate of refrigeran the compressor oil is increaces and the oil is expecte evaporated and seperated to return to the compresor. from the oil. 5. If the oil level can been seen on the oil level gauge, conduct the Oil level Π step 4 (Operate S-PTI and stop gauge at P10.) for oil returning again. Remove the 6.Bypass the gas from high pressure excess oil side to low pressure side of gauge Excess oil manifold and adjust the low pressure to 0 kPa or more. 7.Loosen the oil plug and remove the ٥٥ excess oil. Oil plug 8.Close the oil plug when no more oil comes out. 9.Take off "Remove excess oil" lavel Remo sticked on compressor body. excess oil

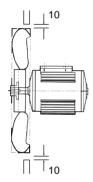

REMOVING EXCESS COMPRESSOR OIL IS NOT COMPLETED. REMOVE EXCESS COMPRESSOR OIL. THEN TAKE OFF THIS LABEL

- (5) Handling method of the stop valves
 - (1) Place of the stop valve and its kind

- ① Stop valve at compressor suction side
- ② Stop valve at compressor discharge side

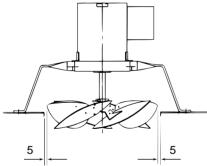
Before operation, be sure to make sure the discharge stop valve and the suction stop valve are open. Operating the compressor with stop valves closed may burn out the compressor motor.


4.2.2 Fan and fan motor


(1) Specification

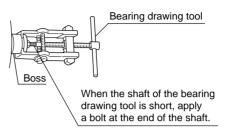
		Evaporator	Condenser	
Fan	Model	Propeller fan		
ц	Size	440mm	300mm	
	Model	3-phase squ	irrel-cage	
		induction motor		
	Output (60Hz)	700/90W	670W	
to	(Number of poles)	(2P/4P)	(4P)	
Motor		Shielded ball	Shielded ball	
	Bearing	bearing with	bearing with	
		rubber seal	rubber seal	
		6203WNC	620400NC-X	

(2) Installation structure


a. Condenser fan and fan motor

b. Evaporator fan and fan motor

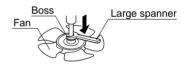
Evaporator fan and fan motor



(3) Replacement procedure

1) Condenser fan

Remove the fan grille and the fan guide, and loosen the two hexagonal sets of screws on the boss of the fan, then pull the fan forward out.

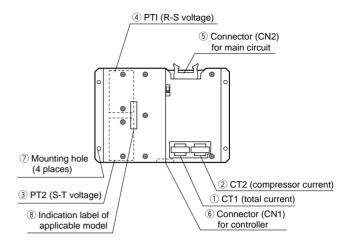

%If the boss is stuck to the motor shaft, use the bearing drawing tool on the market to pull out the fan. • How to use bearing drawing tool on the market.

- 2) Condenser fan motor
 - 1 Remove the condenser fan.
 - ② Disconnect the fan motor cable from the magnetic switch in the control box.
 - ③ Remove the fan motor mounting bolts, and replace the motor.
 - ④ Install the fan and connect the cable.
 - (5) After replacement, confirm that the fan is not in contact with the fan guide. (For checking, rotate the fan by hand.)
- 3) Evaporator fan

Loosen the two sets of screws on the boss portion of the fan, and pull the fan downward out.

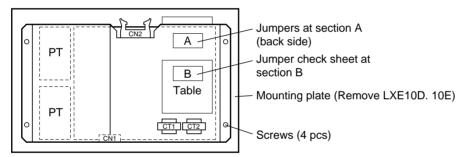
% If the boss is stuck to the motor shaft, use a large spanner as shown below.

- 4) Evaporator fan motor
- ① After removing the fan at item 3), disconnect the fool proof wire connection.
- ② Remove the motor mounting bolts. (Do not remove the motor mounting base.)
- ③ After replacing the motor, connect the wiring with fool proof wire connection.
- ④ Install the fan.
- (5) After replacement, make sure that the fan is not in contact with the fan guide. (To check, rotate the fan by hand.)

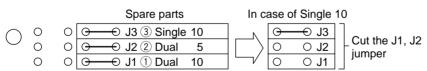

Apply the locking agent on the screws of the fan to prevent from loosening. Otherwise, fan may drop from the motor.

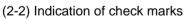
4.2.3 PT and CT board (EC9756)

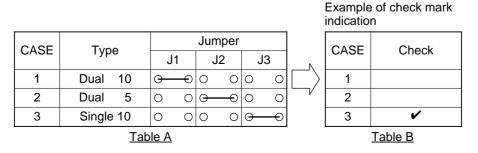
Two function of the measuring device and protector are integrated on this printed-circuit board. This board works as an interface between the main circuit (high voltage) and the controller.


(1) Function

Name	Content
Current measurement	AC 0 to 50A
(CT1, CT2)	(50/60Hz)
Voltage measurement	AC 150 to 600V
(PT1, PT2)	(50/60Hz)
Compressor	Unit with 400V only : 26.0A
overcurrent	Unit with 200V and 400V:
protection	15.0A
Phase sequence	The phase sequence is detected
detection	by sending the voltage
	waveform to the controller.


(2) Pre-assembly work


Before installing the PT/CT board (spare parts), cut jumpers and remove the mounting plate for the over current setting.


(2-1) Overcurrent setting

Cut jumpers at section A according to the following chart in order to make the over current setting. Example: over current setting for 10Hp single power

After cutting jumpers, indicate check marks on the table B.

(2-3) Removal of mounting plate

Check the following table to see if the mounting plate should be removed. If the mounting plate must be removed, remove the four screws and dismount the mounting plate.

	Model	Spare parts	LXE5C	LXE10C	LXE10D	LXE10D LXE10E
	Туре		Dual 5HP	Dual	10HP	Single 10HP
Over	current setting value		8.5A	15	5A	26A
ers	J3	00	0 0	0	0	00
Jumpers	J2	00	00	0	0	0 0
[¬]	J1	00	0 0	<u> </u>	- 0	0 0
N	lounting plate	Provided	Not to be removed	Not to be removed	To be removed	To be removed

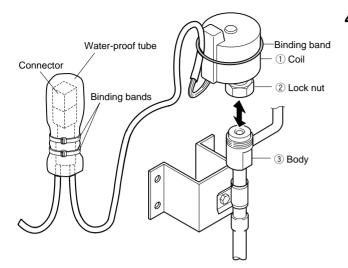
Over current setting and removal of mounting plate

(3) Replacement procedure

Be sure that the main power is disconnected.

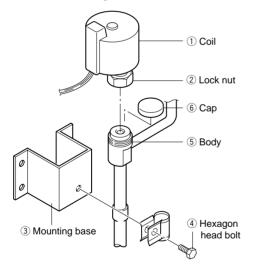
- ① Disconnect the wires routed via CT1 and CT2 from the terminals.
 - *At this time, take care to prevent CT1 and CT2 from being damaged.
- ② Disconnect the connector (CN1) for the controller and the connector (CN2) for the main circuit.
- ③ Remove four mounting nuts.
- ④ After replacing the PT and CT board, connect the lead wired in reverse order of the above removal procedure.
- (5) After checking the wiring once, test-run the system to verify that no trouble is found.

4.2.4 Electronic expansion valve

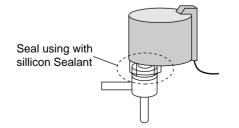

Model Coil : EBM-MD12DM-1
 Body : EDM-B804DM-1

This unit adopts an electronic expansion valve. The electronic expansion valve controls the optimum refrigerant flow rate automatically, using the temperature sensor at the evaporator inlet and outlet pipes.

In case of emergency including controller malfunctions, refer to the chapter of troubleshooting, section 6.4, Emergency operation.


(1) Replacing the coil

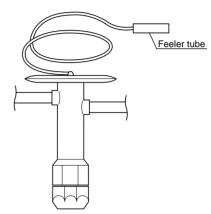
- ① Cut the binding bands which fasten the heat shrincable tube and the lead wires.
- ② Disconnect the lead wire connector from the heat shrincable tube.
- (3) Loosen the lock nut, then remove the coil from the body.
- ④ Install a new coil. Apply the small amount of "Lock-tight" to seal surface and screw of EV body (Don't apply too much "lock-tight".) The tightening torque for installation is 13.7 to 15.7 N · m (134 to 164kgf · cm).
- (5) Seal the lead wire and connector with butyl rubber tape. Restore the binding bands and the lead wire connector into the original state.
- (6) After replacing, carry out refrigerant leakage check, and make sure that there are no leaks.



(2) Replacing the body

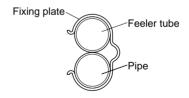
- 1 Loosen the lock nut, then remove the coil.
- ② Remove the hexagonal head bolts, and cut the pipe on the body, then remove remaining pipes from brazing parts.
- ③ Connect a new body to the pipes. Be sure to conduct brazing work while cooling the body below 120°C (248°F) by using wet cloths.
- ④ Fix the body to the mounting base.
- (5) Remove the cap, and mount the coil. Apply the lock-tight to circumference of seal surface and screws for EV body. Do not apply too much lock-tight.

(6) Apply a sillicon sealant to the lock nut section.



⑦ Clamp the lead wire to EV coil body. The edge of the wire protection vinyl tube shall be faced downward to avoid water coming into wire.

4.2.5 Thermostatic expansion valve (TEV)


Model : VTX-3410DMS

This is an internal equalizer type of thermostatic automatic expansion valve and installed at the inlet to the heat exchanger (i.e., Economizer), which is used to detect the superheated degree of outlet refrigerant of the heat exchanger (Economizer) and make automatic adjustment of optimum refrigerant amount in response to operation conditions.

(1) Replacement procedure

- ① Remove the feeler tube and fixing bracket from the valve.
- ② Cut the pipe on TEV, then remove remaining pipes from brazing parts.
- ③ Connect a new TEV to the pipes. Be sure to conduct brazing work while cooling TEV below 120°C (248°F) by using wet cloths.
- ④ Reinstall and fix the feeler tube and capillary. As shown in the figure below, install the feeler tube directly above the pipe.

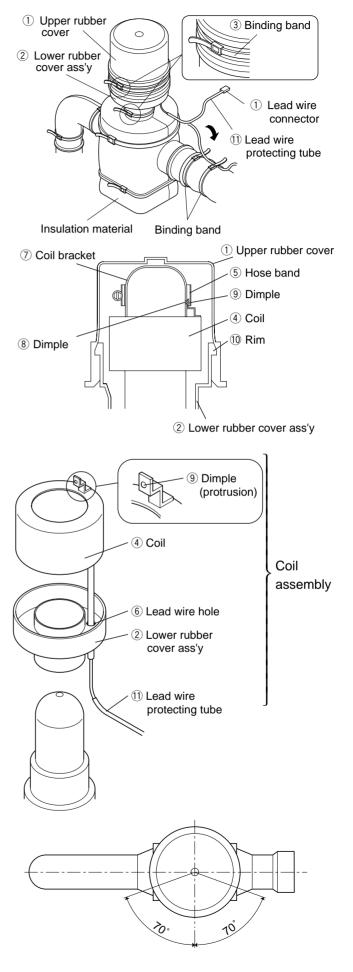
(5) Cover the capillary tube with the heat shrincable tube.

4.2.6 Suction modulation valve

The flow rate of suction gas is controlled between 3 to 100% by a stepping motor in order to conduct capacity control operation.

1. Replacing the coil

- Coil removing procedure
- Disconnect the SMV lead wire connector

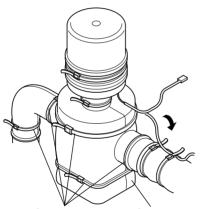

 from the inside of control box.
- (2) Cut the binding band ③ at the upper rubber cover
 ① and lower rubber cover ②, then remove the rubber cover ①.
- (3) Remove the hose band (5) located above the coil (4) with screw driver.
- (4) Remove the coil (4) and the lower cover assembly (2).
 - Reinstalling of coil
- (1) Mount the lower rubber cover assembly (2) and the coil (4).
 - Note 1) Engage the dimple (8) of coil bracket (7) with the dimple (9) of coil (4), and adjust the angle.

Since the angle adjustment is important for control of suction modulating value, carry out the adjusting accurately.

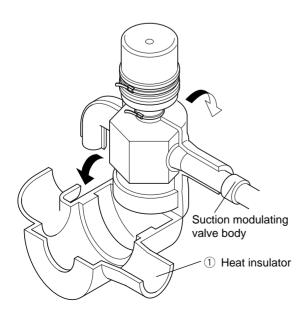
- Note 2) Set the hose band (5) with screw driver
- Note 3) torque is 1 ± 0.05 N \cdot m(10.2 ± 0.5 kgf \cdot cm).

Be careful not to set the band at an angle.

- (2) Replace the upper rubber cover 1
 - Note) Set the engaging section of upper cover to fit with the rim of lower rubber cover 10.
- (3) Place the binding band (3) to fit the upper and lower covers
 - Note 1) Fastening is 100 to 140 N(10.2 to 14.3kgf).
 - Note 2) Set the buckle of lower binding band within the range of $\pm 70^{\circ}$ on the left side and right side of the centre line at the front of valve.
 - Note 3) Fix the lead wire carefully so that water does not enter into its protecting tube ①. (Fix lead wire with binding band.)
- (4) Connect the connector of lead wire ① to the inside of control box.



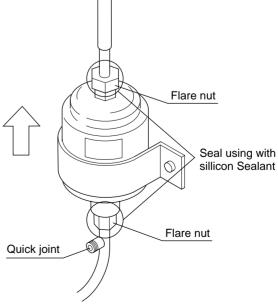
2. Replacement of body


- (1) Remove the coil. Refer to the section 1."Replacing the coil" for removing procedure.
- (2) Remove the heat insulator ① for the SMV after cut the binding band ②.
- (3) Heat up the brazed joint on the piping of SMV body to disconnect the pipe at brazed section.
- (4) Assemble piping of the SMV body, and conduct brazing while keeping the temperature of lower body of SMV below 120°C (248°F) by covering the body with wet cloth.
 - Note) When brazing, to keep the temperature of body, including value body, coil, lead wire, etc. below 120°C by supplying water.

In this work, be sure to prevent water from entering into the lead wire protection tube.

- (5) Install the heat insulator ① and fasten it with bandling band ②.
- (6) Install the coil. Refer to the section 1."Replacing the coil" for removing procedure.

0 Bandling band 1 Heat insulator

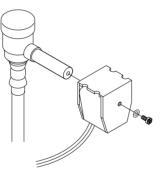

4.2.7 Drier

The drier automatically absorbs moisture in the refrigerant while it is circulated. It also commonly works as a filter to remove dust in the refrigerant. Replace the drier if it does not absorb moisture or if it is blocked. When installing the new drier, follow the directions given on the label and do not make any mistake about the flow direction of the drier.

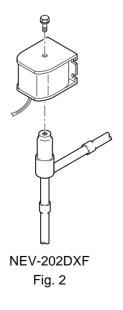
(1) Replacement procedure

- Conduct the automatic pump down to collect the refrigerant in the liquid receiver. Refer to page 4-3 and 4-4 for the automatic pump down.
- ② Then, quickly replace the drier with a new one after loosening the flare nuts on the inlet and outlet side of the drier.
- ③ When the flare nuts are loosened, if no sound of gas refrigerant leakage is detected at the flare nut section, then air mixing into the refrigerant is suspected. In this case, conduct vacuum-dehydrating from the quick joint located at the inlet side of drier.
- ④ After completing of the replacement of the drier, be sure to conduct refrigerant leakage test to confirm that no refrigerant leakage is occuring.
- (5) Check on the green colour of the liquid / moisture indictor after system operation has started.
- ⑥ Apply a sillicon sealant to the flare nut section.

Adhere some anti-corrosion tape to the flare nut section.



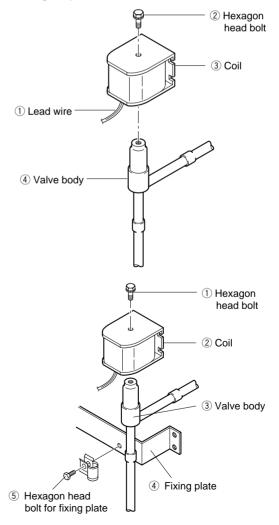
4.2.8 Solenoid valve


Two kinds of solenoid valves are employed for the unit.

Coil is common and replacement procedure is also almost the same for all types of valves.

Valve name	Symbol	Valve type	Type of coil
Economizer Solenoid valve.	ESV	NEV-202DXF	
Injection Solenoid valve.	ISV	NEV-202DAF	
Discharge gas by-pass Solenoid valve.	BSV		
Liquid Solenoid valve.	LSV		NEV- MOAB507C
Defrosting Solenoid valve.	DSV	NEV-803DXF	MOAB307C
Hot gas Solenoid valve.	HSV		
Reheat Solenoid valve.	RSV		
Capillary Solenoid valve.	CSV		

(1) Replacing the coil


- Remove the lead wire connector from the inside of the control box, and cut and recover the binding band which fastens the lead wire.
- ② Remove the hexagonal head bolt on the top of the coil to pull the coil out.
- Replace the coil with a new one and restore the hexagonal head bolt, the binding band and connector on the original position.
 When reassembling the coil, the tightening torque should be 2.9 N · m (30 kg · cm).

(2) Replacement of valve body

- ① Remove the hexagonal head bolt on the top of the coil to pull the coil out.
- (2) Remove the hexagonal head bolt of the fixing plate, and cut the two pipes at the side of the valve body.

Disconnect the remaining pipes at the brazed joint sections.

- ③ Insert the new valve body into the pipe and conduct brazing while keeping the temperature of the valve body below 120 °C (248 °F) by cooling.
- ④ Install the coil and restore the hexagonal head bolt of the fixing plate and the connector into their original position.

4.2.9 Discharge pressure regulating valve

Model KVR15

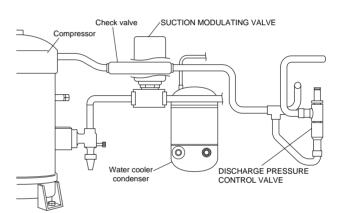
(1) Replacing the valve

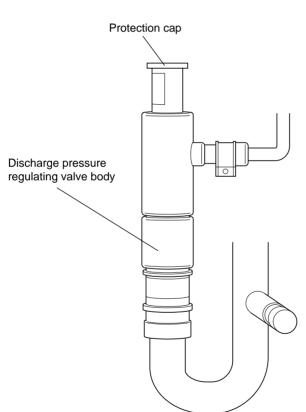
① Remove the protection cap to conduct brazing for the valve body.

Be sure not to turn the regulating screw inside the valve, since the pressure has been adjusted to 690 kPa (7.0 kg/cm²).

- ② When brazing, it is required to cool the valve body in order to keep the temperature of valve body below 140 °C by covering the body with wet cloth or the like.
- ③ After brazing work, set and tighten the protection cap.

The tightening torque should be 8 to $10 \text{ N} \cdot \text{m}$. Apply lock-tight, etc. on the screw section to avoid loosening of the cap.

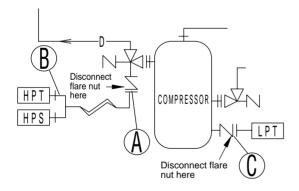

④ After replacement, carry out refrigerant leakage check, and make sure there are no leaks.


4.2.10 Check valve

Model LCV(B)5

(1) Replacement procedure

- Remove the pipe clamp which fixes the check valve, then heat up the valve to disconnect the brazed joint.
- ② Install the new check valve taking care to install it in the correct direction, which is the same direction as the arrow shown in the label.
- ③ Conduct brazing while cool the center part of valve with a wet cloth to keep the temperature of the valve body below 120 °C (248° F)
- ④ After replacing the valve, carry out refrigerant leakage check, and make sure that there are no leaks.

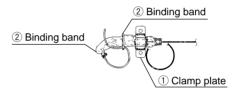


4.2.11 High-pressure switch (HPS)

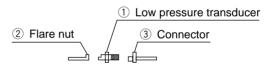
- Model ACB-KB15
- Set point OFF : 2400kPa (24.47kg/cm²) ON : 1900kPa (19.37kg/cm²)
 When the refrigeration pressure of the unit rises abnormally, the compressor stops for safety. The HPS will be activated when the pressure exceeds the set point, as a result of trouble with the condenser fan.

(1) Replacement procedure

- ① Disconnect the lead wire from the control box.
- (2) In order to prevent refrigerant from flowing out, disconnect the high-pressure gauge piping from the gauge joint (with check valve)
 (A) on the compressor side.
- ③ Remove the flare nut
 and mounting screws of HPS on the casing at the left side of the compressor.
- ④ Replace the HPS. After tightening the flare nut
 , tighten the flare nut
 .
- (5) After tightening (A), slightly loosen the flare nut (B), remove air, and retighten (B).
- 6 After replacing carry out the refrigerant leakage check, and make sure that there are no leaks.

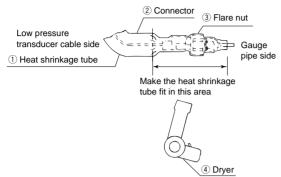

4.2.12 Low pressure transducer (LPT)

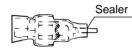
- Model SPCL02
- Colour indication: Low pressure transducer: Blue
 Low pressure transducer: cable: White


The LPT is located in the refrigerant circuit. The operating low pressure value is displayed on the controller indication panel.

(1) Replacing the transducer

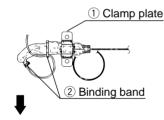
- ① Disconnect the lead wire from the control box.
- In order to prevent refrigerant from flowing out, disconnect the low-pressure transducer piping from the gauge joint (with check valve)
 O on the compressor side.
- ③ Remove two screws on the clamp plate fixing low pressure transducer in place, and cut the binding bands.


④ Remove the heat shrinkage tube, and disconnect the connector from the low pressure transducer, then disconnect the low pressure transducer from the flare nut.


(5) Insert the pressure transducer cable through the heat shrinkage tube, and connect the cable to the new low pressure transducer. If paint on the low pressure transducer is peeled off, apply clear lacquer.

② Low pressure transducer ① Heat shrinkage tube ③ Flare nut
Do not expose the low pressure transducer to hot air of a dryer for excess time.
Otherwise, the transducer may be damaged.

(6) Apply the heat shrinkage tube in the following position, then shrink it with hot air of a dryer.



⑦ Apply sealer between the heat shrinkage tube and the flare nut. (Sealer :KE4898)

(8) Fix the low pressure transducer with the clamp plate, and fix the cable with the binding band.

Fix the shrinkage tube end of the cable side downward for prevention of water entering into the tube.

Fix the tube directing the end downward

4.2.13 High pressure transducer (HPT)

Model SPCH01

 Colour indication: High pressure transducer: Red High pressure transducer: cable: Red

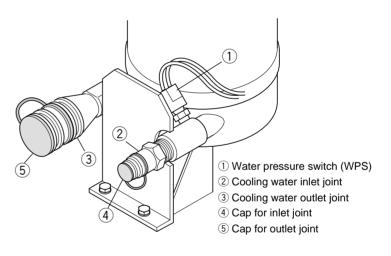
The HPT is located in the refrigerant circuit. The operating high pressure value is displayed on the controller indication panel.

(1) Replacement procedure

The replacement procedure is the same as that for the low pressure transducer.

Make sure that the fixing position and the cable connection is correct.

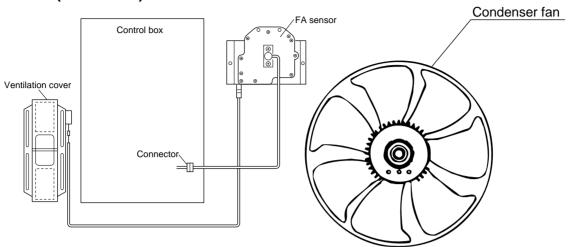
4.2.14 Water pressure switch (WPS)


- Type: LCB-MB10
- Set value: OFF 98kPa (at 1.0-kg/cm² pressure)
 ON 39kPa (at 0.4 kg/cm²

39kPa (at 0.4 kg/cm² pressure)

This switch is used to select air-cooled operation or water-cooled operation. When the cooling water flows to provide an inlet water pressure of the set value or more, a contact in the switch turns OFF to stop the condenser fan, thus switching the unit to water-cooled operation.

(1) Replacement procedure


- ① Disconnect the WPS cable from the controller terminal board.
- ② Stop the cooling water pump and make sure no water pressure is applied. Then, disconnect the WPS.
- ③ Replace the WPS and wrap dry seal tape around the threaded part. Then, tighten a new WPS.

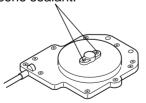
4.2.15 Humidity sensor

Please replace sensor every 2 years. (The accuracy of sensor shall be kept within ±5%RH)

4.2.16 Ventilation opening detector (FA sensor)

• Type: 5ZZ2157

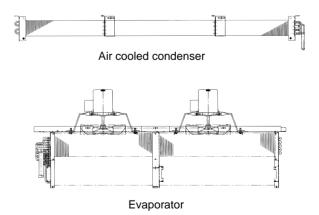
This sensor has a main unit (i.e., wire winder block and position meter) and wire block. The wire tip is connected to the ventilation cover, which detects the opening degree of the ventilation port.


(1) Replacement procedure

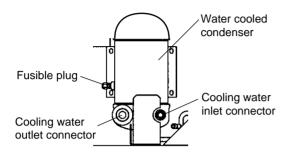
- ① Disconnect the lead wire (with connector connected) in the control box.
- ② Remove the screw clamping the ventilation cover and the wire tip together.
- ③ Remove the screw fixing the main unit to the casing, and replace the one-piece sensor unit together with the wire.

Note)

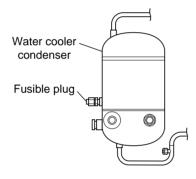
Be sure to replace the one-piece sensor unit together with the wire.


④ After the replacement, seal the position meter fixing screw block on the sensor main unit with silicone sealant.

4.2.17 Air-cooled condenser and evaporator


This finned coil is compact and has uniform heat exchanging performance and high heat exchanging efficiency due to the adoption of corrugated fins.

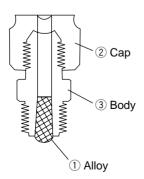
- Washing of air-cooled condenser Carefully flush the air-cooled condenser with fresh water after trip, although this type of condenser employs thick fins and electrodeposition coating for high corrosion resistance.
- For the maintenance of the air-cooled condenser, remove the fan grille, fan guide and temperature recorder box. For the maintenance of the evaporator, remove the rear panel of the evaporator.



4.2.18 Water cooled condenser

This water cooled condenser is of shell-andcoil type that flows cooling water in the cooling pipes and refrigerant in the shell and adopt the cooling pipes with special designed fins. Thus making the condenser lightweight and compact.

4.2.19 Fusible plug

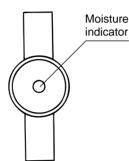


• Replacement of fusible plug

If pressure rises abnormally in the refrigeration circuit, the fusible plug is automatically activated, so, thoroughly check the possible causes if the fusible plug melts.

If the fusible plug is activated, the fusible alloy (1) melts and refrigerant blow out (Melting point: 95°C ~100°C).

For replacement, 1-3 shall be replaced.


4.2.20 Liquid / Moisture indicator

This indicator permits checking of the flow of refrigerant and moisture content in the refrigerant.

(1) Moisture entering

The indicator indicates the moisture content by the colour at the centre of the window. Check this indicator while the unit is operating.

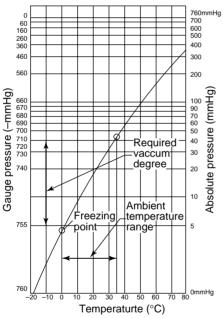
Color	Conclusion
Green	Dry
Yellow	Wet (moisture entered)

- Note) 1. The indicator may appear yellow if it has been exposed to gaseous refrigerant for a long time.
 - 2. The colour of the indicator must be checked after operation of a few hours.
 - 3. The indicator is influenced by the temperature of the liquid refrigerant. At low temperatures, a long time is required for the indicator to change color.
 - 4. To shorten the indication changing time, raise the temperature of the liquid refrigerant. (Block the air discharge grille of the condenser fan to increase the working pressure in order to raise the temperature.)

(2) Flow of refrigerant

When the moisture indicator is sealed with the liquid, bubbles will disappear on the moisture indicator.

- If a lot of bubbles are observed during pulldown and frozen operation, a refrigerant shortage can be suspected.
- Several bubbles may be generated soon after the operation start and chilled operation. However, it is not a refrigerant shortage.


4.2.21 Evacuation and dehydrating

After repairing the refrigerant system, vacuumdehydrate the system before charging the refrigerant.

Vacuum-dehydrating is the process to make the circuit dry by purging the moisture (liquid) in the circuit to outside in state of vapor (gas) using the vacuum pump.

As the pressure lowers below normal atmosphere (760mmHg), the boiling point of water rapidly drops. If the boiling point drops beyond the atmospheric temperature, water will be vaporized. Example: If the atmospheric temperature is 7.2 °C

(45 $^{\circ}$ F), vacuum-dehydrating will be impossible unless the vacuum degree is lower than -752mmHg. For vacuumdehydrating, it is important to select and maintain the vacuum pump.

(1) Vacuum pump selection

Select a vacuum pump considering the following two points.

①Select a vacuum pump whose vacuum achievability is excellent.

(A vacuum degree of -755mmHg or lower can be achieved.)

②The displacement must be relatively large (approx. 40 ℓ /min. or more).

Before vacuum-dehydrating work, be sure to confirm that the pump achieves the vacuum degree of -755mmHg or lower by using the vacuum gauge.

Boiling point of water (°C)	Atmospheric pressure(mmHg)	Vacuum degree(mmHg)
40	55	-705
30	36	-724
26.7	25	-735
24.4	23	-737
22.2	20	-740
20.6	18	-742
17.8	15	-745
15.0	13	-747
11.7	10	-750
7.2	8	-752
0	5	-755

1	Reference) Kinds of vacuum	numns and	l achievable va	cuum dearee
1	IVEIEIEIIUE	I Trinus of Vacuum	pumps and		cuum uegree

Туре	Achievable vacuum degree	Application		
Туре	Displacement	For vacuum-dehydrating	For air exhausting	
Oil rotary type	–759.98mmHg	Applicable	Applicable	
(oil-necessary type)	100ℓ/min.	Applicable	Applicable	
	–750mmHg	Inopplicable	Inapplicable	
Oilless rotary type	50ℓ/min.	Inapplicable	Inapplicable	ſ
(oil-unnecessary type)	–759.98mmHg	Applicable	Applicable	
	40ℓ/min.	Applicable	Аррисаріе	

Take care that this type is often used as the - most convenient type.

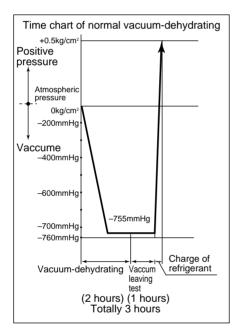
With the pump of an oil rotary type, it is important to replace the oil and check the achievability every 1 to 2 months.

(2) Vacuum-dehydrating method

There are two method of vacuumdehydrating of normal vacuum-dehydrating and special vacuum-dehydrating. In general, the normal vacuum-dehydrating is applied. If any moisture is enters the circuit, apply the special vacuum-dehydrating method. [normal vacuum-dehydrating]

①Vacuum-dehydrating(first time) Connect the gauge manifold to the service ports of the liquid line and the outlet of discharge pressure regulator. Run the vacuum pump for 2 hours or longer. (The achievable vacuum degree must be -755 mmHg or lower)

If a pressure of -755mmHg or lower can not be achieved even after pump operation of 2 hours, moisture or leakage may exist in the system. In this case, run the pump another hour or more. If a pressure of -755mmHg or lower can not be achieved even after operation of 3 hours or more, check for leakage.


Note: Evacuate the system from the service ports ④ of both liquid and outlet of the check valve ⑤, because the system is blocked on the way since the liquid solenoid valve is provided on the way of the system.

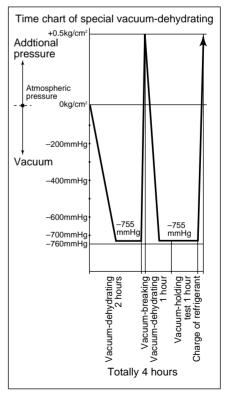
2 Vacuum holding test

Hold the system at a pressure of -755mmHg or lower for 1 hour or longer, and confirm that the vacuum reading does not rise on the vacuum gauge. If it rises, moisture or leakage may exist in the system. However, take care not to leak air from the gauge manifold. If air enters, it is recommended to use the cupper tube directly instead of gauge manifold.

③ Charging of refrigerant

After the vacuum-holding test, make the circuit vacuous again for approx. 10 minutes. Then, charge the specified amount of refrigerant through the service port on the liquid line using the charging cylinder.

[Special vacuum-dehydrating]


This method is that the vacuum-breaking process with nitrogen gas is integrated one time or more in the same way as the normal vacuum-dehydrating process.

- ①Vacuum-dehydrating (first time) 2 hours
- ②Vacuum-breaking (first time) Nitrogen gas is pressurized to 0.5kg/cm² from the service port on suction pipe. Since nitrogen gas breaks the vacuum, the effect of the vacuum-dehydrating is enhanced. However, if there is much moisture, it can not be removed by this method. Therefore, do not allow water entry or produce water during the refrigerant piping work.
- ③Vacuum-dehydrating (second time)
 Run the vacuum pump one hour or longer.
 (The achievable vacuum must be -755mmHg or lower.)
 - If pressure of -755mmHg or lower can not be achieved even after vacuuming of 2 hours, repeat step ②vacuum-breaking and ③vacuum-dehydrating.

④Vacuum holding test 1 hour
 ⑤Additional charge of refrigerant

Same as normal vacuumdehydrating

Note: Make sure to use nitrogen gas for vacuum-breaking. (If any oxygen gas is used, it may explode.)

(1mmHg=0.0013kg/cm²=0.133Kpa)

5. Additional Devices

5.1 USDA transportation

If USDA receptacles and sensors (Optional) are provided to the unit, the unit can take USDA transportation. (Refer to arrangement of main component in 2.2.2.)

5.1.1 Type of USDA sensor/receptacle

Two types of sensors can be installed, according to the type of receptacles.

User should confirm the type of receptacles and select proper sensor in below table.

According to the model, the quantity of receptacle is different. (3 or 4)

Туре	Receptacle	Sensor
1	T3107003	ST9702-1
2	HD10-3-96P	NTC type probe

*3 receptacles : USDA 1, USDA 2, USDA 3

4 receptacles : USDA 1, USDA 2, USDA 3, CTS (Cargo temperature sensor)

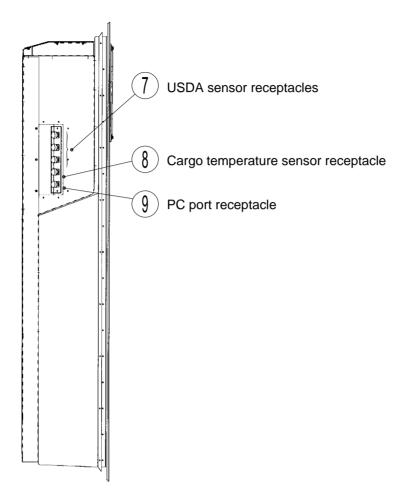
5.1.2 Initial setting

User should confirm initial setting of controller as below.

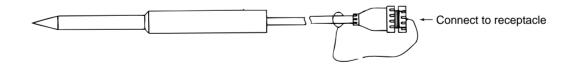
- 1) USDA transportation ; Initial setting mode at page 3-29. Quantity of receptacles should be set
- Type of USDA sensor
 Type of USDA sensor should be set.

5.1.3 USDA sensor calibration

USDA requires sensor calibration every transportation and report each offset figure. Free-supply downloading software enable to assist this. Please refer to "Operation manual for Daikin Container Communication Software".


5.1.4 USDA transportation requirement

Cargo and refrigeration unit shall be required pre-cooling before cargo loading. As to position of USDA sensors and operation, please refer to the guidance of USDA.


5.1.5 USDA report

Free supply downloading software enables you to make document easily, which USDA local officer requires. In detail, please refer to "Operation manual for Daikin Container Communication Software".

•An example of installation of USDA receptacle inside

●USDA sensor (type 2)

6. TROUBLESHOOTING

6.1 Refrigeration system and electrical system

If the unit does not work properly, refer to the following table to find causes of trouble and provide appropriate measures.

State	Malfunction occurrence	Abnormal point	Possible cause
Oluio	A. Neither evaporator	1) No trouble with unit	Power failure
	fan, condenser fan nor		Equipment power supply: OFF
	compressor ran.		Disconnection of power plug
	compressor ran.		Poor contact of power plug
		2 Circuit breaker	Circuit breaker: OFF
			Solenoid valve coil burned out or short circuit
			Contactor coil burned out or short circuit
			Short circuit of wiring inside unit
		③ UNIT ON/OFF key	OFF or malfunction
		Controller	Wire breakage in the control circuit transformer
te			Fuse (10A) burned out
era			Open phase (R or T)
do			Shut down due to alarm generation
ğ		(5) Power transformer	Wire breakage or open phase
S	B. Evaporator fan rotates,	No trouble with unit	ON/OFF control with frozen mode
unit does not operate	but condenser fan and		(Inside temperature is lower than SP.)
jit	compressor do not rotate.		
	C. Condenser fan rotates,	Activation of electronic	Overcurrent due to overload operation, etc.
н	but evaporator fan and	overcurrent protection	
	compressor do not rotate.	device, PT/CT board.	
	D. Compressor rotates,	Fan motor, actuation of	Fan locked by foreign material
	but evaporator fan and	protection thermostat	Not-closing of protection thermostat contact
	condenser fan do not rotate.	protection thermostat	point
	E. Compressor buzzes,	1 Compressor	Open phase
	but it does not operate.	U Complessor	Lock
	but it does not operate.		Low supply voltage
			Motor coil burned out or short circuit
		2 Power transformer	Power transformer malfunction
	A. Unit starts but soon	Activation of HPS within 30	High-pressure switch malfunction
	stops	 seconds after compressor starting 	Compressor discharge side stop valve: closed
	31003	 Abnormal low pressure 	Liquid solenoid valve: closed
		drop within 2 seconds	Electronic expansion valve: closed
		after compressor starting	Compressor suction side stop valve: closed
sdc		(3) Activation of electronic	Overcurrent due to overload operation, etc.
stc		overcurrent protection devices, PT/CT board	
L O		 4 Activation of compressor 	Overcurrent due to overload operation, etc.
t sc		thermal protector	
Unit operates but soon sto	B. Evaporator fan rotates,	1 No trouble with unit	In ON-OFF control operation with frozen mode
es	but condenser fan and		
irat	compressor do not rotate.		
be	C. Condenser fan rotates,	1 Activation of high-	Refrigerant overcharge
jit c	but evaporator fan and	pressure switch	Air entering in the refrigerant system
5	compressor do not	(Air cooled	Insufficient air flow rate in the air cooled condenser
	rotate.	condenser type)	○ Condenser finned coil blocked
	· ·		 Air passage blocked by foreign material
			\bigcirc Broken blade of condenser fan
			○ Condenser fan motor rotation failure
			 Activation of condenser fan motor thermal protector

State	Malfunction occurrence	Abnormal point	Possible cause
	C. Condenser fan rotates,	(1) Activation of	\bigcirc Short circuit of condenser fan motor
	but evaporator fan and	high-pressure switch	○ Wrong installation of condenser fan
6	compressor do not	(Water cooled	○ Reverse rotation of condenser fan
ď	rotate.	condenser type)	Insufficient cooling water flow rate
st	- Claice		○ Water-cooled condenser blocked with scale
l õ		(2) Electronic overcurrent	Overcurrent due to overload operation, etc.
Unit operates but soon stops		protection device, PT/CT board actuation	
pq		③ Abnormal low	Electronic expansion valve: poor contact of connector
tes		pressure drop	Electronic expansion valve: incorrect opening
era			Electronic expansion valve: blocked
do			Suction modulating valve: blocked
nit			Dryer: blocked
		4 Abnormal discharge	Hot gas solenoid valve: coil wire broken
		gas temperature	Injection solenoid valve: closed
			Injection capillary tube: blocked
			High pressure increasing due to overload
	A. Suction pressure is	① Poor compression of compressor	Abrasion of scroll slide section
	high	2 Hot gas solenoid valve	Valve leakage
		③ Defrosting solenoid valve	Valve leakage
		④ Discharge gas	Valve leakage
		by-pass solenoid valve	
		5 Electronic expansion valve	Electronic expansion valve malfunction
			Poor contact of connector
		6 Injection solenoid valve	Valve leakage
	B. Suction pressure is excessively low	1 Liquid solenoid valve (Not opened)	Solenoid valve coil malfunction
		2 Shortage of refrigerant charge	Refrigerant leakage
		③ Drier	Drier blocked with contamination
		④ Suction modulating valve	-
<u>d</u>			Disconnection of connector
does not drop.		5 Electronic expansion valve	Valve blocked with moisture
ڪ س			Valve blocked with contamination
Ö			Breakage of coil lead wire or disconnection of connector
			Lead wire breakage or miss-mounting of evaporator inlet or outlet sensor
tur		C Francistar	Electronic expansion valve malfunction
era		6 Evaporator	Abnormal frosting Insufficient air flow rate in the evaporator
d d			· · · · · · · · · · · · · · · · · · ·
te			 Air passage blocked by foreign material Evaporator fan motor malfunction
			 Evaporator fan damage or fall out
l L			\bigcirc Air short circuit around the evaporator
			\bigcirc Reverse rotation of evaporator fan motor
	C. Economizer circuit	Economizer solenoid valve	Solenoid valve coil malfunction
1	does not function		Valve blocked with contamination
			Thermostatic expansion valve is choked with moisture
1			Thermostatic expansion valve is clogged with contamination
			Gas in the feeler bulb of thermostatic expansion valve is leaked
	D. Defrosting is not	1 Manual defrost key	Poor contact of connector
	initiated.	 Evaporator outlet sensor 	Incorrect installation of sensor
		 Defrosting solenoid valve 	Valve blocked with contamination
			Valve coil malfunction
		④ No trouble with unit	Defrost interval is set to 99 H
1			(Demand/defrost setting)
L		1	

State	Malfunction occurrence	Abnormal point	Possible cause
e B	E. Defrosting is operated ① No trouble with the unit Excessive amount		Excessive amount of moisture in cargo
op.	frequently.	 2 Defrost timer 	Short setting timer
e temp	F. Refrigeration unit is	1) Container	High cargo temperature
Inside temperature does not drop.	normal		Poor thermal insulation or air leakage
u d		1 Dear compression of compressor	Abrasion of scroll slide section
es n de)	A. Discharge pressure	1 Poor compression of compressor	
e do g mc	is low.	2 Hot gas solenoid valve	Not open
eatin		③ Defrosting solenoid valve	Not open
hehe	D. Diacharga pressure is	 Injection solenoid valve Tructure for 	Valve blocked with contamination
Inside temperature does not $\overline{\mathbb{I}}$ rise (in the heating mode)	B. Discharge pressure is	① Evaporator fan	Damages on fan blade
	high		Rotation failure of fan motor
Ν	A llustice	1 Question modulation value	Actuation of fan motor thermal protector
	A. Hunting	① Suction modulating valve	Valve blocked with contamination
Control is unstable	D. T	2 Electronic expansion valve	Valve blocked with contamination
sta	B. Temperature	① Suction modulating	Valve blocked with contamination
- Ĥ	continues dropping.	valve	Magnetic coil malfunction
<u>.</u> .	0		Wire breakage
tro	C. Temperature	① Suction modulating valve	Valve blocked with contamination
l õ	continues rising.	2 Electronic expansion valve	Valve blocked with contamination
$\left \right\rangle$		③ Evaporator	Insufficient evaporator air flow rate (Refer to II-B-6).)
		④ Drier	Drier blocked with contamination
		5 Shortage of refrigerant charging amount	Refrigerant leakage
	A. Abnormal noise is	1) Compressor	Worn-out of bearing
ou.	generated		Abrasion of scroll slide section
ati			Loose-tightened bolt
_div		② Evaporator fan	Loose fan motor set bolt
a l			Deformation of fan motor set leg or loose-tightened bolt
1 2			Bending of fan motor shaft
puq			Worn-out of fan motor bearing
r a			Deformation of fan guide
e o			Contact between fan and fan guide
ial noise or abnormal vibration.		③ Condenser fan	Loose-tightened fan motor set bolt
			Bending of fan motor shaft
Ë			Worn-out of fan motor bearing
VI Abnorm			Deformation of fan guide
A A			Deformation of condenser front panel
М	B. Abnormal vibration	① Compressor	Loose-tightened set bolt
	generates	2 Piping	Loose-tightened or missing of clamp bolt
5	Frosting area is less than		t is controlled to make superheat degree small
Lij	one third of compressor surface.	by electronic expansion v	
Abnormal frosting on compressor	Frosting area is	Suction gas temperature sensor	Defective contact of sensing section
l fi	more than one third of		Deviation from specified sensor characteristics
l 🖁 🖞	compressor surface.	Discharge gas	Defective contact of sensing section
2 S		temperature sensor	Deviation from specified sensor characteristics
4 P P		Evaporator inlet sensor	In back-up operation due to faulty sensor
Þ		Evaporator outlet sensor	In back-up operation due to faulty sensor
		Electronic Expansion valve	Valve blocked with contamination
sible	Although water coupling	1 No actuation of water	Insufficient cooling water flow rate
sod	are connected,	pressure switch	Water pressure switch malfunction
is im	condenser fan continues	 No trouble with 	To prevent temperature in the control box from rising,
tion	rotating.	the unit	the condenser fan rotates at CBS of 59°C or higher.
I Water-cooled operation is impossible		③ Refrigerant over	Condenser fan is operating due to abnormal high
l€ °		charged	pressure caused by refrigerant over charged

State	Malfunction occurrence	Abnormal point	Possible cause
r light	"Abnormal Ventilator	Displayed ventilator	The ventilator opening detector (VOD) is short-
ilato	Opening" display	opening value remains	circuited.
Vent		the same even by sliding	The fixing screws of the VOD's wire or the
"Abnormal Ventilator Opening" indicating light		the ventilator cover.	ventilator cover are loose or come off.
\bno penii		No ventilator opening	The connector for VOD use is disconnected.
¶" 10		value is displayed.	

6.2 Alarm codes on electronic controller

If any alarm occurs, search its cause and repair it referring to the following table.

Be sure to check the connectors in the electronic controller as the poor contact of them may cause the controller alarm codes.

Alarm code	Content		Possible cause			
F101	The high-pressure switch (HPS)					
	activates within 30 seconds	Check valve is blocked.				
	after the compressor start or	Lead wire of the high-pressure switch is broken.				
	the protection devices activates	High-pressure switch contact i	s defective.			
	five times at unit start-up.	High-pressure switch is defect	ive.			
		Condenser fan motor is in abn	ormal stop.			
		Printed-circuit board malfunction	on.			
F109	Low pressure lowers abnormally	Liquid solenoid valve coil is bro	oken.			
	within 2 seconds after	Low-pressure transducer (LPT) value is abnormal.	CPU board is faulty.		
	compressor started.			The low-pressure transducer is fault		
F111	High-pressure switch (HPS)	High-pressure switch lead wire	e is broken.	. .		
	does not activate at set value.	High-pressure transducer lead				
F301	Temperature setting request	Set point temperature is not set.				
		Failure of SRAM (on CPU boa				
F401	In the chilled or partial frozen	Short circuit or breakage of bo				
F403	mode, the supply air sensor	Wrong wiring connection on bo				
	(SS) and return air sensor (RS)	Both sensors defective				
	is defective.	CPU board malfunction				
F603	The suction modulating valve does not	Suction modulating valve coil i	s broken.			
	fully close although it is set to be full-close.	Suction modulating valve malf				
F701	Abnormal power voltage Note) 1.	The voltage is too high.				
		S phase is open.				
		Power supply waveform is not	sinusoidal.			
F705	S phase is open phase	The voltage selector is in poor				
		The circuit breaker is in poor c				
		Power plug is in poor contact.				
		Power cable is broken				
		Open phase of power supply				
F803	Any following malfunction	Refer to the possible cause of the left mentioned malfunction codes.				
1000	codes are counted 10 times					
	E101 · E103 · E107					
	E109 · E203 · E707					
E101	High-pressure switch (HPS)	Refrigerant is overcharged				
2101	activated during operation.	Wrong refrigerant is charged. (i.e. HCFC22)				
	activation daming operations	Air entered in the refrigerant s				
		Insufficient air flow rate	Fins are blocked			
			Air passage is blocked by some foreign materials Short circuit of condenser cooling air Wrong installation of condenser fan			
			Condenser fan rotates reverse.			
			Condenser fan breakage.			
			Condenser fan fell out.			
		Ambient temperature is abnorr	Jui.			
			Motor stops due to	Blocked finned coil.		
		Condenser fan motor running is abnormal				
		is autivitidi	thermal protector	Air passage is blocked by some foreign material		
			actuation.	Wiring lead breakage		
		Motor cooled complement	Motor does not run	· · · ·		
		Water-cooled condenser	Shortage of cooling			
		capacity is decreased Cooling-water temperature high.				
		Blocked with scale				
		HPS malfunction				
		Wiring lead breakage				
		Poor connection with terminal				
		Wrong wiring of high pressure	switch			
		CPU board malfunction				
		Power I/O board malfunction				
E103	Electronic overcurrent protection	Compressor lock				
	device (electronic OC) actuates.	CPU board malfunction				
		Power I/O board malfunction PT/CT board malfunction				

Note1: If S phase is open, F701 may occur. When F701 and F705 are displayed together, inspect the S phase for opening.

Alarm code	Content		Possible ca	use	
E103	Compressor thermal protector	Shortage of refrigerant amount	Refrigerant lea	akage	
	(CTP) activates.	Injection solenoid valve is not	Wiring lead br		
		opened.	Defective wirir		
			Coil burned ou	ut	
			Coil fell out		
		Injection capillary is blocked	1		
		Compressor thermal protector (CTP) malfunctio	n	
		Compressor lock			
E105	Micro-computerized overcurrent	Compressor lock			
E105	protection device	Excessive refrigerant supply during	Injection color		ot closed due to foreigr
					of closed due to foreign
	(Micro-computerized OC)	defrosting and metering heating	materials caug		
	activates.	The current sensor (CT2)	CPU board ma		
E407		value is abnormal.	Current senso		
E107	Discharge gas temperature	Injection solenoid valve	Valve is block		nination
	sensor (DCHS) becomes	operates improperly.	Wire lead brea	akage	
	abnormally high during		Wrong wiring		
	operation.		Coil burned ou	ut	
			Coil fell out		
		Injection capillary is blocked			
		High pressure is abnormally high.	Overcharge of	f refrigerant	
		Compressor burnt			
		Refrigerant shortage			
		Drier is blocked			
		Excessive frost on the evaporat	or		
		Discharge gas temperature	CPU board ma	alfunction	
		sensor value is abnormal	Sensor failure		
			Evaporator outlet sensor failure during defrosting		
E109	Low pressure continues to	Insufficient refrigerant amount	Shortage of re		
ETOS	lower abnormally for 2		-	-	
	seconds or longer.	Liquid solenoid valve is not opened.	Refrigerant leakage Valve blocked with contamination		
	seconds of longer.				
			Wiring lead breakage Wrong wiring		
			Coil burned ou	Jt	
			Coil fell out		
		Electronic expansion valve	Valve blocked with moisture		
		does not activate.	Valve blocked		
					connector disconnectio
			Evaporator inlet or	outlet sensor wirin	g breakage or wrong installation
			Electronic exp	ansion valve r	malfunction
		Drier is blocked			
		Excessive frost on evaporator	Evaporator fan	Air passage is	blocked by foreign materi
			insufficient	Evaporator f	an breakage
			air circulation	Air-short circ	
				around evap	
					ation of evaporator fan
				Evaporator f	
			Fan motor	Wrong wiring	
			does not run	Fan motor	Wiring lead breakag
				thermal	
					Wrong wiring
				protector	Air passage
				actuates.	is blocked by
			L		foreign materials
			Air leaks on the access panel.		
			Ventilator is open. CPU board malfunction		
		Low-pressure transducer			
		value is abnormal	Sensor malfur		
E201	Pump-down does not end within 60 seconds.	Liquid solenoid valve does	Valve blocked	with contamin	nation
		not close.	Lead wire brea	akage	
			Wrong wiring	ž	
			Coil burned ou	ut	
			Coil fell out		
			Compressor v	alve breakage	•
		Abrasion of compressor scroll		and breakaye	
		Injection solenoid valve does	Valvo blooked	with contomin	ation
		mjection solenolu valve uoes	Valve blocked with contamination Lead wire breakage		
		not close.			

Alarm code	Content		Possible cause	
E201	Pump-down does not end	Injection solenoid valve does	Wrong wiring	
	within 60 seconds.	not close.	Coil burned out	
			Coil fell out	
		Leakage of hot gas solenoid valve	Valve blocked with contamination	
		Defrosting solenoid valve	Valve blocked with contamination	
		Discharge gas by-pass solenoid valve	Valve blocked with contamination	
		Low pressure sensor value is	Printed-circuit board malfunction	
		abnormal	Pressure sensor malfunction	
E203	Overcool protection function	Suction modulating valve does	Lead wire breakage	
	actuate (control sensor ≦	not operate.	Wrong wiring	
	SP- 3.0) in the chilled ot partial		Coil burned out	
	frozen mode for 3 minutes or		Adopter PCB is defective	
	longer.		Valve blocked with contamination	
		Insufficient evaporator fan air flow rate	Air passage is blocked by foreign materials	
		(Only for partial frozen mode)	Evaporator fan damaged	
			Air short circuit around evaporator	
		Evaporator fan motor thermal	Evaporator fan interferes with guide	
		protector activates	Lead wire breakage	
			Air passage is blocked by foreign material	
E207	Defrosting time is 90 minutes		ff from the evaporator outlet tube.	
	long		ator outlet sensor is improperly installed.	
		Evaporator outlet sensor is defe		
		Defrosting solenoid valve does		
		not open	Coil burned out	
			Valve blocked with contamination	
		Hot gas solenoid valve does	Lead wire breakage	
		not open.	Coil burned out	
			Valve blocked with contamination	
		Injection solenoid valve does	Lead wire breakage	
		not open	Wrong wiring	
			Coil burned out	
			Coil fell out	
			Valve blocked with contamination	
		High-pressure transducer or low	v-pressure transducer malfunction.	
		Evaporator outlet sensor value	Printed-circuit board malfunction	
		is abnormal	Sensor malfunction	
		Excessive frosting		
E303	Humidity setting request			
E305	Defrosting interval setting request	CPU board (SRAM) malfunction	Resetting	
E307	Calendar setting request	CFO board (SRAW) manufiction	Resetting	
E311	Trip start setting request			
E401	Supply air temperature sensor	Line breakage		
	(SS) malfunction	Short circuit		
		Wrong wiring		
		Sensor value is abnormal	Printed-circuit board malfunction	
E402	Data recorder supply air	Line breakage		
	temperature sensor (DSS)	Short circuit		
	malfunction	Wrong wiring		
		Sensor value is abnormal Printed-circuit board malfunction		
E403	Return air temperature sensor	Line breakage		
	(RS) malfunction	Short circuit		
		Wrong wiring		
		CPU board malfunction		
E404	Data recorder return air			
E404		Line breakage		
	temperature sensor (DRS)	Short circuit		
	malfunction	Wrong wiring		
		CPU board malfunction		
E405	Discharge temperature sensor (DCHS) malfunction	Line breakage		
		Short circuit		
		Wrong wiring		
		CPU board malfunction		
EADE	Suction and concer (SCC)	Line brookege		
E406	Suction gas sensor (SGS)	Line breakage		
E406	Suction gas sensor (SGS) malfunction	Short circuit		
E406				

Evaporator inlet sensor (EIS)	1 Provide and the second s		
	Line breakage		
malfunction	Short circuit		
	Wrong wiring		
	CPU board malfunction		
Evaporator outlet sensor	Line breakage		
(EOS) malfunction	Short circuit		
	Wrong wiring		
	CPU board malfunction		
Ambient sensor (AMBS)	Line breakage		
malfunction	Short circuit		
	Wrong wiring		
	CPU board malfunction		
Low pressure transducer	Line breakage		
(LPT) malfunction	Short circuit		
	Wrong wiring		
	CPU board malfunction		
High pressure transducer	Line breakage		
	Short circuit		
	Wrong wiring		
	CPU board malfunction		
Voltage sensor (PT1)	Sensor malfunction		
malfunction	CPU board malfunction		
Voltage sensor (PT2)	Sensor malfunction		
	CPU board malfunction		
	Sensor malfunction		
	CPU board malfunction		
	Sensor malfunction		
malfunction	CPU board malfunction		
Pulp temperature sensor	Wrong wiring in the USDA receptacle.		
	Line breakage in the USDA receptacle.		
	Short circuit in the USDA receptacle.		
	Junction cable breakage		
	Junction cable poor contact		
	Wrong wiring in the control box		
	Short circuit in the control box		
	Pulp temperature sensor malfunction		
	CPU board malfunction		
Humidity sensor (HuS)	Lead wire breakage		
,	Wrong wiring		
mandhouon	Humidity sensor malfunction		
	CPU board malfunction		
Line breakage of suction	Lead wire breakage		
-	Wrong wiring		
- · · ·	CPU board malfunction		
	Wrong setting of initial setting of controller (DECOS a, b, c)		
	Switch malfunction		
	Short circuit		
-			
(sneet key) Momentally power failure	CPU board malfunction		
	Commercial power supply stops for 40 to 300msec. Lower ventilator is opened during frozen operation		
	Evaporator outlet sensor (EOS) malfunction Ambient sensor (AMBS) malfunction Low pressure transducer (LPT) malfunction High pressure transducer (HPT) malfunction Voltage sensor (PT1) malfunction Voltage sensor (PT2) malfunction Current sensor (CT1) malfunction Current sensor (CT2) malfunction Pulp temperature sensor (USDA1 to 3) malfunction Humidity sensor (HuS) malfunction Line breakage of suction modulating valve (SMV) or drive circuit malfunction or wrong setting of controller Abnormal contact point of manual defrost key (sheet key)		

Malfunction and Alarm

when the socket is disconnected or loosened.

Location	Socket No.	Malfunction or Alarm when the socket is disconnected or loosened.	
	CN81 (White)	No Alarm No power supply to Controller	
SMV Board	CN82 (Red)	No Alarm No power supply to Controller	
(EC6)	CN83 (Yellow)	F803	
	CN84 (Blue)	F603	
PT/CT	CN1	F705	
Board (EC6)	CN2	F705 E315 E417 E421 E423	
I/O Board (EC2)	CN26	No AlarmNo power supply to recorder	
	CN13	No Alarm No power supply to Controller	
CPU Board	CN15	No Alarm No communication to cpomputor for data down loading	
(CN1)	CN16	No Alarm No power supply to MODEM	
	CN18	No AlarmNo "signal" power supply to EV	
	CN1	$E109 \rightarrow F109 (F803)$	
Terminal Board	CN2	F101	
(TB1)	CN3	No AlarmNo power to PCC (No operation)	
	CN4	No Alarm No power supply to Controller	
Terminal Board	CN6	F803, E401, E403, E409, E411, E413, E415 ("E" displayed in SS, RS temperature indication for E401, E403)	
(TB1)	CN7	F406 E407 E402 E404 ("E" displayed in DRS, DSS, EIS, SGS temperature indication)	

Location	Fuse No.	Malfunction or Alarm when the fuse is broken.			
Fu1		F101			
	Fu2	BSV			
Terminal	Fu3	$E109 \rightarrow F109 (F803)$ No power to LSV (LSV close)			
Board (TB1)	Fu4	F603, E315, E417, E421, E423			
,	Fu5	No Alarm No power supply to Controller			
	Fu6	No Alarm No power supply to Monitoring Cirit			

6.3 Troubleshooting for automatic PTI (J-code)

Step	Content	Alarm code	Conclusion	Possible cause	Check method
P00	Basic data record	No indication	No judgment		
P02	Alarm check on all sensor	Same as normal operation	Same as normal operation	Same as normal operation	Same as normal operation
P04	Power supply check	No indication	Same as normal operation	Same as normal operation	Same as normal operation
P05	Compressor start running Check	J051	Same as normal operation	Same as normal operation	Same as normal operation
P06	HPS check	J061	Abnormal OFF point	(1) HPS malfunction(2) High pressure transducer	(1) Check HPS (2) Compare to Gauge
		J062	Not return	(HPT) malfunction (3) Gas leak from Gauge	manifold (3) Remove Gauge
		J064	High pressure does not rise.	manifold	manifold.
D 00		J065	High pressure does not drop.	(No unit malfunction)	T
P08	Pump down check	J081	Pump down requires too long	Blocked with contamination of liquid solenoid valve	Try again S-PTI
			time.	Leakage of hot gas by-pass solenoid valve	Touch the outlet pipe of the solenoid valve.
				Leakage of defrosting solenoid valve	Touch the outlet pipe of the solenoid valve.
				Leakage of discharge gas by- pass solenoid valve	Touch the outlet pipe of the solenoid valve.
P10	Solenoid valve	J101	Excessive	Liquid solenoid valve malfunction	Check Liquid solenoid valve
1 10	check	0101	leakage of	Suction modulating valve malfunction	Check Suction modulating valve
			solenoid valve	Injection valve malfunction	Check Injection valve
P12	RS, SS accuracy check	J121	Excessively large temperature difference between RS and DRS	SS malfunction	Compare the SS with the DSS on the controller panel.
			Excessively large temperature difference between SS and DSS	RS malfunction	Compare the RS with the DS on the controller panel.
P14	HPT, LPT accuracy check	J141	Excessively large pressure difference between HPT	HPT malfunction	Compare the high pressure valve with the gauge manifold of HPT (on the controller panel).
			and LPT	LPT malfunction	Compare the low pressure valve with the gauge manifold of LPT (on the controller panel)
P16	Evaporator fan Hi/Lo speed operation check	J161	Abnormal operation of evaporator fan speed	Evaporator fan and motor malfunction. Magnetic contactor (EFH/L) and wiring malfunction.	Check Evaporator fan and motor. Check magnetic contactor (EFH/L) and wiring.
P20	Check on economizer solenoid valve (ESV)	J201	ESV does not open.	ESV coil malfunction	Check on ESV coil, wiring and terminals.
				ESV malfunction	Check on capillary tube temperature on ESV outlet.

Step	Content	Alarm code	Conclusion	Possible cause	Check method
P22	Check on discharge gas by-	J221	BSV does not open.	BSV coil malfunction	Check on BSV coil, wiring and terminals.
	pass solenoid valve (BSV)			BSV malfunction	Check on outlet piping temperature of BSV
P24	Check on defrosting solenoid valve (DSV)	J241	DSV does not open.	DSV coil failure	Check on DSV coil, wiring and terminals.
				DSV malfunction	Check on outlet piping temperature of DSV
P26	Standard Pull down operation	No indication			
P28	SMV function check (Open SMV to 3%)	J281	(LPT : decrease 20Kpa)	SMV coil failure SMV malfunction	Refer 4.2.5. Check appearance (Replace coil bracket)
P29	Electronic expansion valve check	J291	Pump down time is too long.	Electronic expansion valve wiring malfunction	Check knocking sound of the coil Disconnect and connect the connector of the coil
				Electronic expansion valve coil burn out.	Check on knocking sound of coil.
				Leakage of hot gas by-pass solenoid valve	Touch the outlet pipe of the solenoid valve.
				Leakage of defrosting solenoid valve	Touch the outlet pipe of the solenoid valve.
				Leakage of discharge gas by- pass solenoid valve	Touch the outlet pipe of the solenoid valve.
P30	ISV opening or closing check	J301	ISV does not open.	ISV coil malfunction	Check on ISV coil, wiring and terminals.
				ISV malfunction	Check on capillary tube temperature on ISV outlet.
P32	HSV opening or	J321	HSV does not	HSV coil malfunction	Check on HSV coil,
	closing check		open.		wiring and terminals.
				HSV malfunction	Check on outlet piping
					temperature of HSV
P50	Pull-down cooling	J501	Out of ambient	No unit malfunction	Check ambient
	capacity		temperature	Ambient temperature is lower than -10°C	temperature.
			condition	Ambient temperature is higher than 43°C	
		J502	Pull down time is	Same as normal operation	Same as normal
			too long.		operation
P60	0°C control	No indication	No judgement		
P70	Defrosting	J701	Out of starting	Wrong installation of EOS.	Check the installation of
	operation check		condition. (EOS		EOS.
			is 20°C or more.)	Leakage of hot gas solenoid valve	Touch the outlet pipe of the solenoid valve.
		J702	Defrost time is	Wrong installation of EOS.	Check the installation of EOS.
			too long.	EOS malfunction.	Check EOS.
P80	Pull-down cooling	J801	Pull down time is	Same as normal operation	Same as normal
	capacity		too long.		operation
P90	-18°C control	No	No judgement		
		indication			

Note :"Same as normal operation" means that it is same as judgement, countermeasure and check method at normal operation.

6.4 Emergency operation

6.4.1 Emergency operation of controller

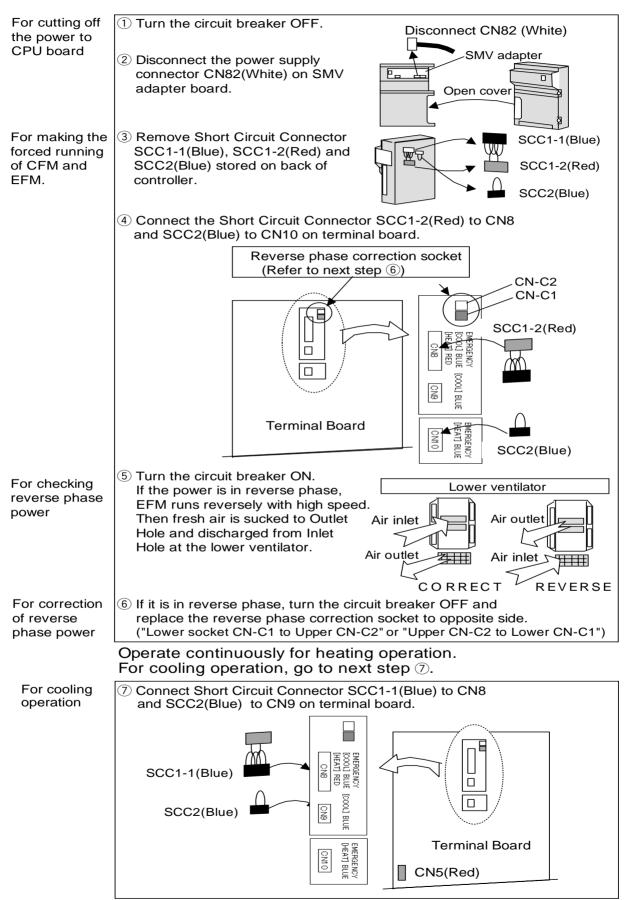
In case of the controller malfunction, emergency operation can be executed by using emergency operation kit.

(1) Components to be prepared (emergency operation kit)

- Short circuit connector --- Stored on the back of CPU/IO board case in the control box.
- \bigcirc Electronic expansion valve emergency cap --- Stored in the spare parts kit.
- \bigcirc Suction modulating valve emergency magnet --- Stored in the spare parts kit.

(2) On-site work

The on-site work is requested as follows for Emergency Operation


- 1) Wiring change for short circuit operation
 - '1) Wiring change for cutting off the power to CPU board
 - 2) Wiring change for making the forced running of Compressor, Condenser Fan and Evaporator Fans.
 - * Connect the short circuit connector stored on the back of controller.
 - * For the details, refer to the section 6.4.2 "Short Circuit Operation"
- ② Electronic Expansion Valve opening adjustment for 1/4 opening.
 - * Use Emergency Cap for the for 1/4 opening.
 - * For the details, refer to the section 6.4.3 "Opening Adjustment"
- ③ Suction Modulation Valve opening adjustment for full opening.
 - * Use Emergency Magnet for full the opening.
 - * For the details, refer to the section 6.4.4 "Emergency operation of suction modulating valve"

(3) Operating condition at emergency

Temperature can not be controlled. Turn the circuit breaker <u>on or off</u> to maintain the target temperature.

Mode	Available function of protection devices	Operating condition of unit
Cooling operation	RPP : Reverse phase protection deviceHPS : High pressure switchCTP : Compressor thermal protector	 Compressor runs continuously. Evaporator fan runs at low speed continuously. Condenser fan runs continuously. Electronic expansion valve operates with fixed opening by the emergency cap. Suction modulating valve operates with full opening by emergency magnet.
Heat operation		 Compressor stops. Evaporator fan runs at high speed continuously. Condenser fan stops.

6.4.2 Short circuit operation of controller

6.4.3 Opening adjustment of electronic expansion valve

In case of the controller malfunction or faulty electronic expansion valve coil, electronic expansion valve can be operated with fixed valve opening by using emergency cap.

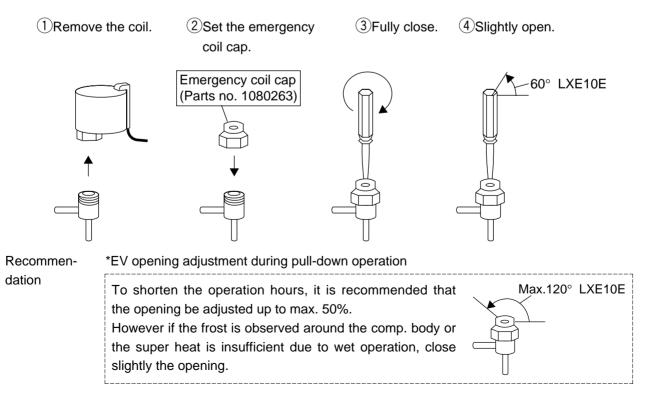
A Caution

If the electronic expansion value is energized while the coil is removed from value body, the coil driver with which the value needle is pushed protrude excessively. In this state, when the value is restored from emergency operation, the needle may be caught with the driver resulting the value fully closed.

Therefore, be sure not to energize the coil before emergency operation.

- [Disenergizing of coil]
- \bigcirc When controller malfunction

Disconnect the red power supply connector (red : CN5) on the terminal board when removing of controller short circuit connector (SCC1-1 or SCC1-2) to disenergize the electronic expansion valve.(described in the section 6.4.2)

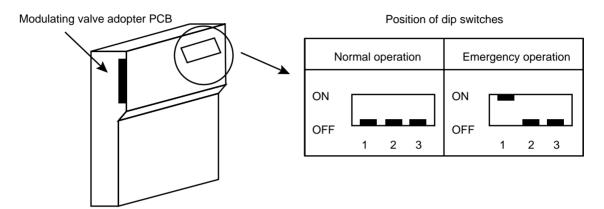

When only electronic expansion valve is conducted emergency operation.
 Disconnect CN18 on the controller CPU board to disenergize the electronic expansion valve.

1 Remove the coil.

- O Set the emergency cap on the electronic expansion valve body.
- ③Fully close the electronic expansion valve by turning the minus recessed screw of emergency cap clockwise with miniature driver.

(Tightening torque: approx. 1 kgf · cm The torque is required to tighten the valve softly until the driver stops turning)

- (4) Then slightly open the electronic expansion valve by turning the minus recessed screw of emergency cap counter clockwise for 60°
- (5) Apply a loose-free adhesive on the screw.

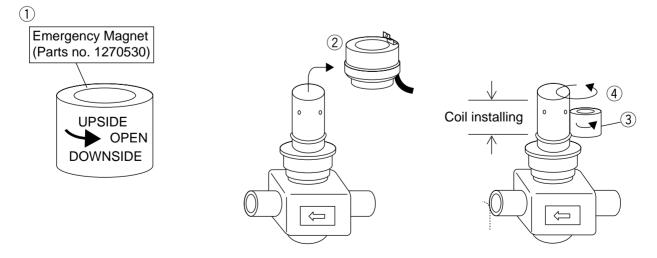


6.4.4 Emergency operation of suction modulation valve:

In case of emergency, there are two ways to open the suction modulating valve manually. It is important to follow these steps in this sequence. Use step 1 first. If this is not working, then use step 2.

Step 1. Fully open the valve by using the dip switch on the adopter PCB.

In case of controller malfunction while the suction modulating valve and adopter PCB are normal, turn the No. 1 dip switch ON to open the valve automatically. At the same time the dip switch is switched, a clicking sound can be heard that the valve fully opens. If nothing will be heard, continue to step 2.


Controller CPU/IO unit

Step 2. Fully open the valve by using an emergency magnet.

If the method of step 1 was not working, use this step to open the valve.

In case of the suction modulating valve or adopter PCB malfunction, the valve can be opened by using an emergency magnet.

- **①Prepare Emergency Magnet**
- ②Remove the coil of the modulating valve.
- ③Contact the emergency magnet to the coil mounting section of the valve with the "UPSIDE" up. (the emergency magnet is attracted to the coil installing section by magnetic force of the inside driving magnet)
- ④Rotate the emergency magnet counter clockwise to open the valve fully. (when the valve is fully opened, the inside driving magnet will be inactive and the emergency magnet can be removed)

6.4.5 Automatic Back up for supply / return air temperature sensors

When the unit is equipped with the data recorder sensors, the following emergency operations are available.

When the DRS and DSS are used for the emergency operation, DATA RECORDER SENSOR ON/OFF SETTING to be set OFF. (Refer to page 3-27, basic function setting mode.)

RS: Return air temperature sensor DRS: Data recorder return air temperature sensor

SS: Supply air temperature sensor DSS: Data recorder supply air temperature sensor

Malfunction code	Abnormal point	Unit back-up operation
E401	SS	Chilled mode:
	Supply air temperature sensor (SS) for control	Back-up operation with DSS
	malfunction	Frozen mode:
		only malfunction code indication
E402	DSS	Only malfunction code indication
	Data recorder supply air temperature sensor (DSS) malfunction	
E401	Both SS and DSS malfunction	Chilled mode:
		Back-up operation with RS –2°C.
E402		Frozen mode:
		only malfunction code indication
E403	RS	Chilled mode:
	Return air temperature sensor (RS) for control	only malfunction code indication
	malfunction	Frozen mode:
		Back-up operation with DRS
E404	DRS	Only malfunction code indication
	Data recorder supply air temperature sensor (DRS) malfunction	
E403	Both RS and DRS malfunction	Chilled mode:
		only malfunction code indication
E404		Frozen mode:
		Back-up operation with SS +5°C
H006	Chilled mode:	Only malfunction code indication
	Temperature difference is 2 °C or more between SS	
	and DSS or more than one hour.	
	Frozen mode:	Only malfunction code indication
	Temperature difference is 2 °C or more between RS	
	and DRS or more than one hour.	

7. APPENDIX

7.1 Standard tightening torques for bolts

	Bolt size	Main part	Tightening torque			
		Main part	N⋅m	kgf∙cm	lbf ∙ ft	
	M4	Small parts	1.6	16	1.2	
	M5	Solenoid valve	3.0	31	2.2	
	M6	Access panel	5.2	53	3.8	
steel		Evaporator fan motor				
		Condenser fan motor	12.3	125	9.1	
sse	Solution Control box					
Stainless	Service door					
Sta		Evaporator fan motor mounting base				
	M10	M10 Compressor suction flange		257	18.6	
		Compressor discharge flange				
	M12	Compressor	42.7	435	31.5	

Note: Tolerance of tightening torque is within ±10%.

7.2 Standard tightening torque for flare nut

Pipe	e size	Main part	Tighten torque			
mm	in.		N∙m	kgf∙cm	lbf ∙ ft	
φ 6.4	2/8	Compressor pressure port	15.7	160	11.3	
φ 9 .5	3/8	-	36.3	370	26.8	
φ12.7	4/8	Except Dryer	54.9	500	40.5	
φ12.7	4/8	Only Dryer	28.0	286	20.7	

Note: Tolerance of tightening torque is within \pm 10%.

7.3 Standard tightening torque for stop valve

	Discharge side stop valve			Sucti	on side stop	valve
	N ⋅ m	N · m kg · cm lbf · ft			kg · cm	lbf ⋅ ft
Backseat torque	20	204	14.8	35	357	25.8
Grand torque	15	153	11.8	15	153	11.8

Note: Tolerance of tightening torque is within \pm 10%.

7.4 Resistance of motor coil and solenoid valve coil

Symbol	Parts name	Value of resistance Ω	Remarks
СМ	Compressor motor coil	1.780Ω(@75°C)	
CFM	Condenser fan motor coil	57.2Ω	
EFM	Evaporator fan motor coil	19.4Ω	
LSV	Liquid solenoid valve coil		
HSV	Hot gas solenoid valve coil		
DSV	Defrosting solenoid valve coil		
ISV	Injection solenoid valve coil	15.2 ± 1.10 (common)	
ESV	Economizer solenoid valve coil	- 15.2±1.1Ω (common)	
BSV	Hot gas by-pass solenoid valve coil		
RSV	Reheat coil solenoid valve coil		
CSV	Capillary solenoid valve coil		
EV	Electronic expansion valve coil	White - Red : 150Ω	White
		Orange - Red : 150Ω	
		Yellow - Brown : 150Ω	Orange
		Blue - Brown : 150Ω	
			Yellow Brown Blue
			(COM)
SMV	Suction modulation valve coil	Blue - Yellow : 113Ω	Blue
		Black - White : 113Ω	Yellow (M)
			Black White

%The values of resistance are at room temperature excluding those of compressor.

7.5 Standard tightening torque for electronic expansion valve coil (EV coil)

N · m	kgf - cm	lbf ⋅ ft
13.7 to 15.7	134 to 164	10.1 to 11.6

7.6 HFC134a, temperature - vapor pressure characteristics table

Temperature	Vapo	r pressure	Temperature	Vapo	r pressure
°C	kPa	kg/cm² ⋅ G	°C	kPa	kg/cm² ⋅ G
- 40.0	- 49	- 0.5015	20.0	470	4.7977
- 39.0	- 46	- 0.4734	21.0	488	4.9795
- 38.0	- 44	- 0.4440	22.0	507	5.1656
- 37.0	- 41	- 0.4135	23.0	525	5.3560
- 36.0	- 37	- 0.3817	24.0	544	5.5508
- 35.0	- 34	- 0.3486	25.0	564	5.7500
- 34.0	- 31	- 0.3141	26.0	584	5.9538
- 33.0	- 27	- 0.2783	27.0	604	6.1621
- 32.0	- 24		28.0		
	- 24 - 20	- 0.2410		625	6.3751
- 31.0		- 0.2023	29.0	647	6.5929
- 30.0	- 16	- 0.1621	30.0	668	6.8154
- 29.0	- 12	- 0.1204	31.0	691	7.0428
- 28.0	- 8	- 0.0771	32.0	713	7.2751
- 27.0	- 3	- 0.0322	33.0	737	7.5124
- 26.0	1	0.0144	34.0	760	7.7548
- 25.0	6	0.0627	35.0	785	8.0023
- 24.0	11	0.1128	36.0	810	8.2551
- 23.0	16	0.1646	37.0	835	8.5131
- 22.0	21	0.2183	38.0	861	8.7765
- 21.0	27	0.2739	39.0	887	9.0453
- 20.0	32	0.3314	40.0	914	9.3196
- 19.0	38	0.3908	41.0	941	9.5994
- 18.0	44	0.4523	42.0	969	9.8849
- 17.0	51	0.5159	43.0	998	10.1762
- 16.0	57	0.5816	44.0	1027	10.4732
- 15.0	64	0.6494	45.0	1057	10.7761
- 14.0	71	0.7195	46.0	1087	11.0850
- 13.0	78	0.7918	47.0	1118	11.3999
- 12.0	85	0.8664	48.0	1149	11.7209
- 11.0	93	0.9434	48.0	1149	12.0481
- 10.0	100	1.0229	50.0	1214	12.3815
- 9.0	108	1.1048	51.0	1248	12.7213
- 8.0	117	1.1892	52.0	1281	13.0676
- 7.0	125	1.2761	53.0	1316	13.4203
- 6.0	134	1.3657	54.0	1351	13.7797
- 5.0	143	1.4580	55.0	1387	14.1457
- 4.0	152	1.5530	56.0	1424	14.5185
- 3.0	162	1.6508	57.0	1461	14.8982
- 2.0	172	1.7514	58.0	1499	15.2848
- 1.0	182	1.8549	59.0	1538	15.6785
- 0.0	192	1.9613	60.0	1577	16.0793
1.0	203	2.0708	61.0	1617	16.4873
2.0	214	2.1833	62.0	1658	16.9027
3.0	225	2.2989	63.0	1699	17.3254
4.0	237	2.4177	64.0	1741	17.7557
5.0	249	2.5398	65.0	1784	18.1936
6.0	245	2.6651	66.0	1828	18.6391
7.0	274	2.7937	67.0	1872	19.0925
			68.0		
8.0	287	2.9258		1918	19.5539
9.0	300	3.0613	69.0 70.0	1964	20.0232
10.0	314	3.2004	70.0	2010	20.5007
11.0	328	3.3430	71.0	2058	20.9864
12.0	342	3.4892	72.0	2107	21.4805
13.0	357	3.6392	73.0	2156	21.9831
14.0	372	3.7929	74.0	2206	22.4943
15.0	387	3.9505	75.0	2257	23.0142
16.0	403	4.1119	76.0	2309	23.5430
17.0	419	4.2773	77.0	2362	24.0807
			78.0	2415	24.6276
	436	4.4467	/0.0	2410	24.0270
18.0 19.0	436 453	4.4467 4.6201	79.0	2470	25.1837

Conversion rate : 1kg · f/cm² · G=98.0665kPa

7.7 Temperature sensor characteristics table (SS/RS/DSS/DRS/RSS/RRS/EIS/EOS/SGS/AMBS)

Temperature(°C)	Temperature(°F)	Resistance(kΩ)	Temperature(°C)	Temperature(°F)	Resistance(kΩ)
+ 50	+ 122	0.985	+ 0	+ 32	6.860
+ 49	+ 120.2	1.018	- 1	+ 30.2	7.176
+ 48	+ 118.4	1.054	- 2	+ 28.4	7.508
+ 47	+ 116.6	1.090	- 3	+ 26.6	7.857
+ 46	+ 114.8	1.128	- 4	+ 24.8	8.226
+ 45	+ 113	1.167	- 5	+ 23	8.614
+ 44	+ 111.2	1.208	- 6	+ 21.2	9.023
+ 44	+ 109.4	1.251	- 7	+ 19.4	9.454
+ 43	+ 105.4	1.296	- 8	+ 17.6	9.909
+ 42	+ 107.8	1.342	- 8	+ 17.8	10.39
+ 41	+ 103.8	1.342	- 9 - 10	+ 15.8	10.89
	+ 104	1.441	– 10 – 11	+ 14 + 12.2	
+ 39					11.43
+ 38	+ 100.4	1.493	- 12	+ 10.4	11.99
+ 37	+ 98.6	1.548	- 13	+ 8.6	12.59
+ 36	+ 97	1.605	- 14	+ 6.8	13.22
+ 35	+ 95	1.665	- 15	+ 5	13.88
+ 34	+ 93.2	1.727	- 16	+ 3.2	14.59
+ 33	+ 91.4	1.791	- 17	+ 1.4	15.33
+ 32	+ 89.6	1.859	– 18	- 0.4	16.12
+ 31	+ 87.8	1.929	– 19	- 2.2	16.95
+ 30	+ 86	2.003	- 20	- 4	17.83
+ 29	+ 84.2	2.080	- 21	- 5.8	18.76
+ 28	+ 82.4	2.160	- 22	- 7.6	19.75
+ 27	+ 80.6	2.244	- 23	- 9.4	20.80
+ 26	+ 78.8	2.331	- 24	- 11.2	21.91
+ 25	+ 77	2.423	- 25	– 13	23.08
+ 24	+ 75.2	2.519	- 26	- 14.8	24.33
+ 23	+ 73.4	2.619	- 27	- 16.6	25.66
+ 22	+ 71.6	2.724	- 28	- 18.4	27.06
+ 21	+ 69.8	2.833	- 29	- 20.2	28.56
+ 20	+ 68	2.948	- 30	- 22	30.15
+ 19	+ 66.2	3.068	- 31	- 23.8	31.83
+ 18	+ 64.4	3.193	- 32	- 25.6	33.63
+ 17	+ 62.6	3.325	- 33	- 27.4	35.53
+ 16	+ 60.8	3.463	- 34	- 29.2	37.56
+ 15	+ 59	3.607	- 35	- 31.0	39.72
+ 14	+ 57.2	3.758	- 36	- 32.8	42.02
+ 13	+ 55.4	3.917	- 37	- 34.6	44.46
+ 12	+ 53.6	4.083	- 38	- 36.4	47.07
+ 11	+ 51.8	4.258	- 39	- 38.2	49.85
+ 10	+ 50	4.441	- 40	- 40	52.81
+ 9	+ 48.2	4.633			
+ 8	+ 46.4	4.834			
+ 7	+ 44.6	5.046			
+ 6	+ 42.8	5.268			
+ 5	+ 42.0	5.501			
+ 5		5.747			
+ 3	+ 37.4	6.004			
+ 2	+ 35.6	6.275			
+ 1	+ 33.8	6.560			

7.8 Temperature sensor characteristics table (DCHS)

Temperature(°C)	Temperature(°F)	Resistance(k Ω)	Temperature(°C)	Temperature(°F)	Resistance(k Ω)
72	162	32.783	102	216	12.566
74	165	30.629	104	219	11.835
76	169	28.635	106	223	11.153
78	172	26.787	108	226	10.515
80	176	25.073	110	230	9.919
82	180	23.482	112	234	9.361
84	183	22.005	114	237	8.840
86	187	20.633	116	241	8.351
88	190	19.358	118	244	7.894
90	194	18.171	120	248	7.465
92	198	17.066	122	252	7.063
94	201	16.037	124	255	6.685
96	205	15.078	126	258	6.331
98	208	14.184	128	262	5.998
100	212	13.350	130	266	5.686

7.9 High pressure transducer characteristics table

7.10 Low pressure transducer characteristics table

Pressure	Out put	Pressure	Out put
(kPa ⋅ G)	(V)	(kPa ⋅ G)	(V)
0	0.50	1100	1.62
100	0.60	1200	1.72
200	0.70	1300	1.83
300	0.81	1400	1.93
400	0.91	1500	2.03
500	1.01	1600	2.13
600	1.11	1700	2.23
700	1.21	1800	2.34
800	1.32	1900	2.44
900	1.42	2000	2.54
1000	1.52	2100	2.64

Pressure	Out put	
(kPa ⋅ G)	(V)	
- 500	- 1.03	
- 400	- 0.72	
- 300	- 0.42	
- 200	- 0.11	
- 100	0.19	
0	0.50	
100	0.81	
200	1.11	
300	1.42	
400	1.72	
500	2.03	
600	2.34	
700	2.64	
800	2.95	
900	3.25	
1000	3.56	

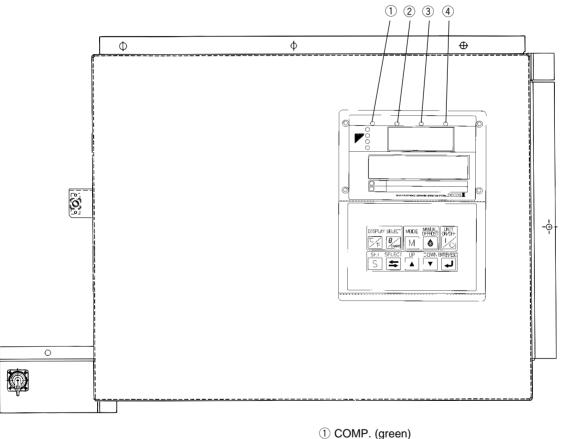
7.11 Piping diagram ●LXE10E

EV:Electronic Expansion Valve LSV:Liquid Solenoid Valve DSV:Defrost Solenoid Valve ESV:Economizer Solenoid Valve WPS:Water pressure switch

SMV:Suction Modulation Valve HSV:Hot Gas Solenoid Valve

DPR:Discharge pressure regulator

ISV:Injection Solenoid Valve

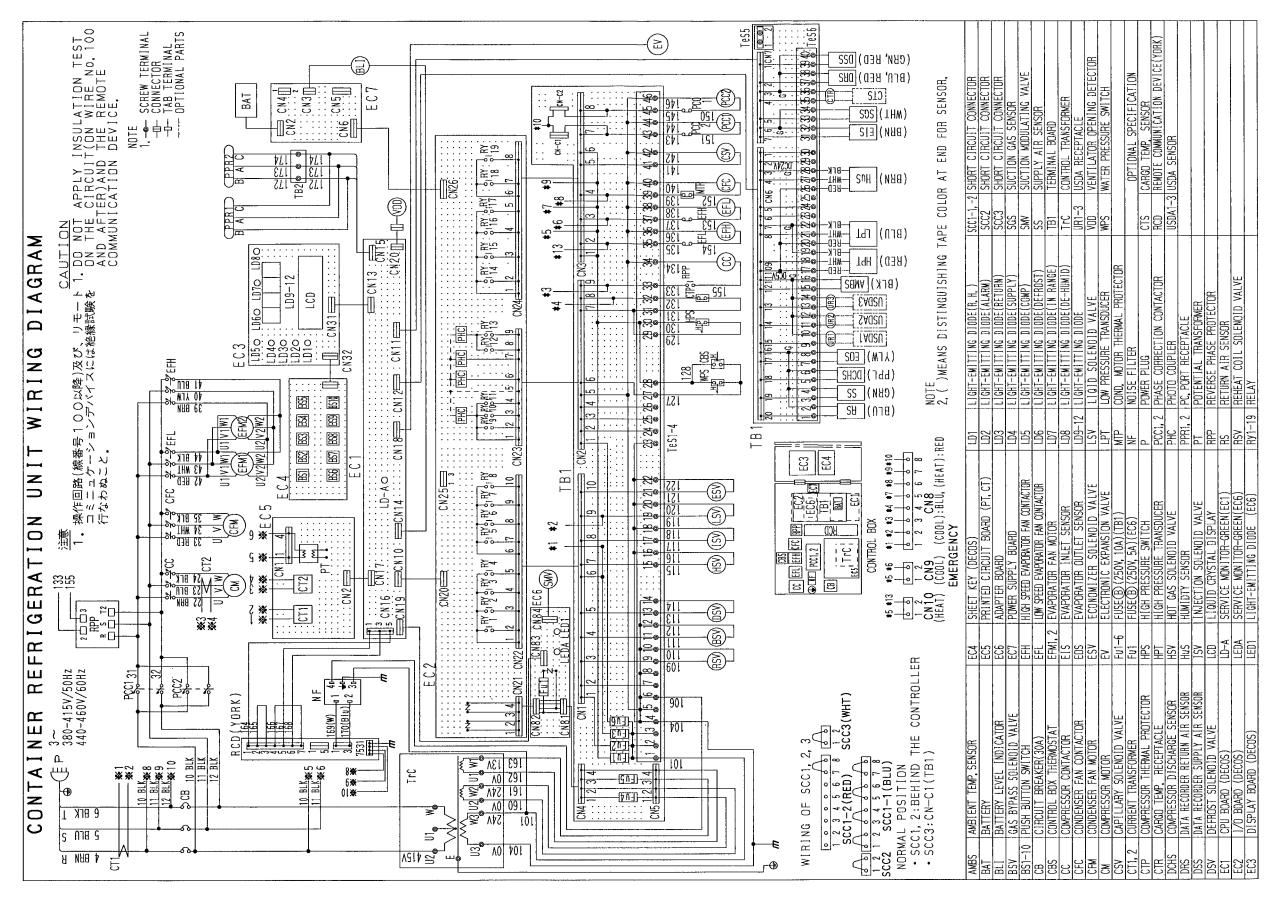

BSV:Discharge Gas Bypass Solenoid Valve

CSV:Capillary Solenoid Valve

7.12 Pilot lamps

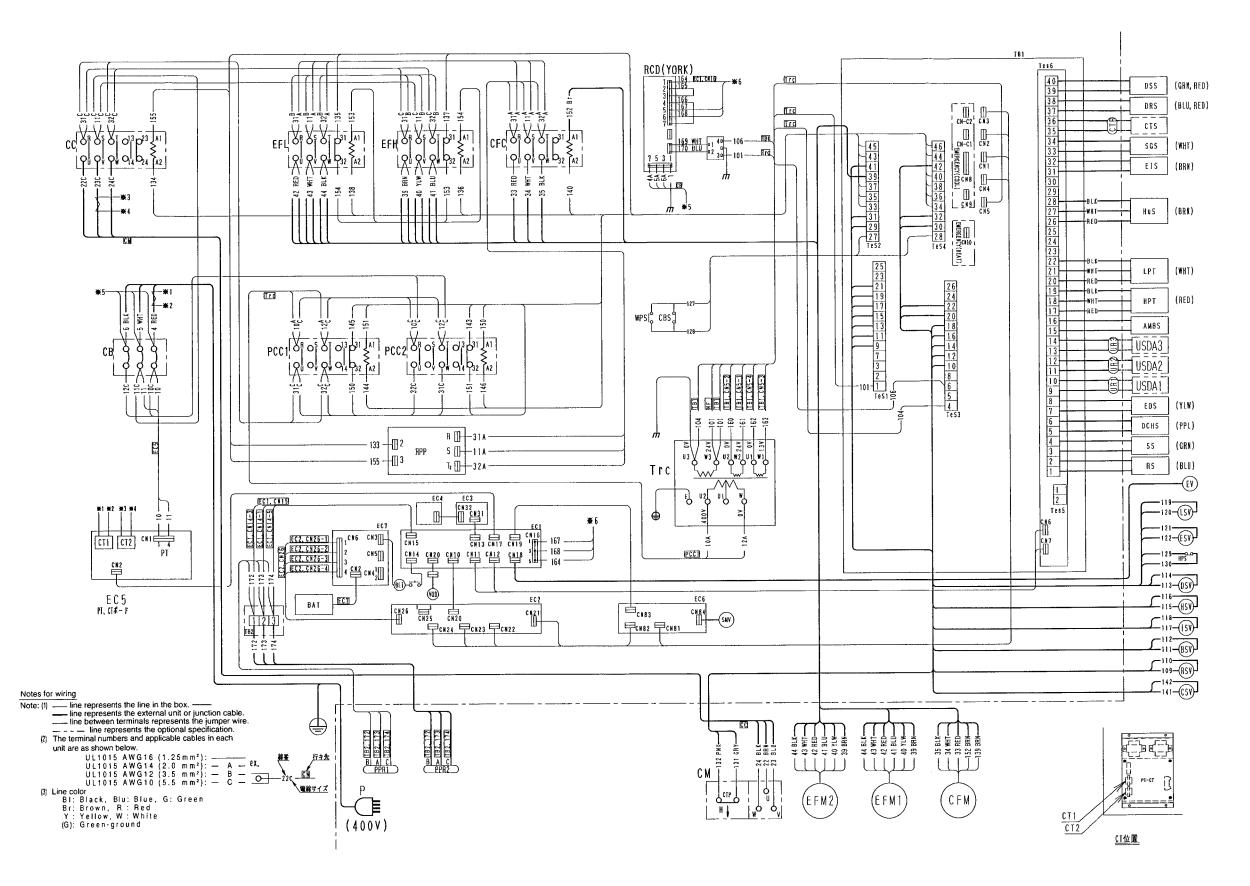
Four pilot lamps which indicate operating mode are mounted on the controller in the control box.

Pilot lamp	Color	Operating condition
COMP.	Green	The compressor is running
DEFROST	Red	The unit is under defrosting operation
IN RANGE	Orange	The inside temperature is within the proper range (within $\pm 2.0^{\circ}$ C ($\pm 3.6^{\circ}$ F) of the preset temperature).
DE-HUMID.	Red	The unit is set to the dehumidification control operation. (optional)


COMP. (green)
 DEFROST (red)
 IN RANGE (orange)
 DE-HUMID. (yellow)

7.13 Fuse protection table

	Protection of:	Wiring diagram:
Fuse 1 (250V, 10A)	High pressure switch (HPS)	Drawing 7.14 at TB1 print board
	Compressor contactor (CC)	page 7-10
	• Evaporator fan contactor high speed (EFH)	
	• Evaporator fan contactor low speed (EFL)	
	Condensor fan contactor (CFC)	
	Compressor terminal protector (CTP)	
	Phase correction contactor (PCC1, PCC2)	
Fuse 2 (250V, 10A)	Gas bypass solenoid valve (BSV)	Drawing 7.14 at TB1 print board
	Defrost solenoid valve (DSV)	page 7-10
Fuse 3 (250V, 10A)	Hot gas solenoid valve (HSV)	Drawing 7.14 at TB1 print board
	Liquid solenoid valve (LSV)	page 7-10
	 Injection solenoid valve (ISV) 	
	Economizer solenoid valve (ESV)	
Fuse 4 (250V, 10A)	Electronic expansion valve (EV)	Drawing 7.14 at TB1 print board
	• PT and CT board	page 7-10
Fuse 5 (250V, 10A)	Recorder	Drawing 7.14 at TB1 print board
	LED indication	page 7-10
	• LCD display	
Fuse 6 (250V, 10A)	Remote monitoring receptacle (RM)	Drawing 7.14 at TB1 print board
		page 7-10
Fuse 7 (250V, 5A)	Suction modulating valve (SMV)	Drawing 7.14 at EC6 print board
	Č Č ,	page 7-10


7.14 Schematic wiring diagram

●LXE10E-1

7.15 Stereoscopic wiring diagram

●LXE10E-1

DAIKIN INDUSTRIES, LTD.

Head Office. Umeda Center Bldg., 4-12, Nakazakinishi 2-chome, Kita-ku, Osaka, 530-8323 Japan.

Tel: 06-6373-4338 (From overseas 81-6-6373-4338)

Fax: 06-6373-7297 (From overseas 81-6-6373-7297)

Tokyo Office. Tokyo Opera City Tower 12F. 3-20-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-1412, Japan.

Tel: 03-5353-7860 (From overseas 81-3-5353-7860)

Fax: 03-5353-7913 (From overseas 81-3-5353-7913)