

DAIKIN INVERTER CONTAINER REFRIGERATION UNIT

Service Manual

LX10F11B or later (DECOS Va)

DAIKIN INDUSTRIES, LTD.

TR 13-07

Make sure to read these instructions before operation.

This manual provides the minimum information required to operate the container refrigeration unit LX10F ** B or later including the part names of each operating section, how to turn the power on and how to change the temperature setting, as well as the functions of the product and maintenance work, etc.

In addition, refer to the following document have been issued.

· Parts list

Contents

SAFETY PRECAUTIONS	Chapter 4 Service ····· 4-1
DANGER3	4.1 Manual Check ······ 4-2
WARNING3	4.2 Automatic Pumpdown ····· 4-6
CAUTION3	4.3 Connecting and Removing Manifold gauges \cdots 4-7
Chapter 1 Unit Specifications · · · · 1-1	4.4 Checking Non-Condensable Gas ······ 4-8
1.1 Main Specifications ·······1-2	4.5 Sight Glass ····· 4-8
1.2 Set Point and Protection Device ·············1-3	4.6 Refrigerant Recovery and Charge ······ 4-9
1.3 Construction	4.6.1 Operation Pressure Check ······ 4-10
1.3.1 Outside View	4.6.2 Refrigerant Recovery ····· 4-10
1.3.2 Inside View1-5	4.6.3 Vacuum and Dehydration · · · · 4-10
1.3.3 Control Box 1-6	4.6.4 Refrigerant Charge ····· 4-11
1.3.4 CPU Board and I/O Board ·······1-7	4.7 Electrical Circuit and Servicing Precautions · · · 4-12
1.3.5 Inverter Box1-8	4.8 Parts Replacement · · · · 4-13
1.3.6 Valves and Functions ······1-9	4.8.1 Compressor 4-13
1.3.7 Sensor Location · · · · · · · · · · · · · · · · · · ·	4.8.2 Evaporator Fan and Fan Motor Removing · · · 4-15
1.3.8 Printed Circuit Board ······ 1-10	4.8.3 Inverter Board (EC8) 4-16
1.4 Operation Mode and Control 1-11	4.8.4 CPU Board (EC1) 4-16
1.4.1 Frozen Mode 1-11	4.8.5 I/O Board (EC2) · · · · 4-17
1.4.1 Frozen Mode 1-11 1.4.2 Chilled Mode 1-12	4.8.6 Operation Board (EC3) 4-17
	4.8.7 PT/CT Board (EC7) 4-17
1.4.3 Dehumidification Mode (Option) · · · · 1-13 1.4.4 Defrost Mode · · · · · · · 1-14	4.8.8 High Pressure Switch (HPS) ····· 4-18
	4.8.9 High Pressure Sensor (HPT) · · · · · 4-18
1.4.5 Compressor, Fan Motor, Valve Function · · · 1-15	4.8.10 Low Pressure Sensor (LPT) · · · · 4-19
1.4.6 Common Control 1-16	4.8.11 Electronic Expansion Valve (EEV), Economizer Modulation
1.5 Optional Functions 1-17	Valve (EMV), Discharge Modulation Valve (DMV) · · · 4-20
1.5.1 ASC, Automatic Setpoint Change ····· 1-17	4.8.12 Solenoid Valve 4-21
1.5.2 Cold Treatment Transport 1-18	4.8.13 Dryer ····· 4-21
1.5.3 ACT, Automatic Cold Treatment 1-18	4.8.14 Fusible Plug 4-21
1.5.4 Ventilator Volume Detection (FA Sensor) · · · 1-19	4.8.15 Check Valve 4-22
1.5.5 Remote Monitoring Receptacle ······· 1-19	4.8.16 Filter and Strainer ····· 4-22
1.6 Battery Mode 1-19	4.9 Emergency Operation at Controller Malfunction · · · 4-23
1.7 Information Interchange with Personal Computer · · · 1-20	4.9.1 Wiring Change of Controller 4-23
Chapter 2 Controller 2-1	4.9.2 Fixing of EEV Opening · · · · · 4-24
2.1 Operation Panel······2-2	4.9.3 Fixing of EMV Opening 4-24
2.2 Controller Functions List2-3	4.9.4 Fixing of DMV Opening 4-25
2.3 Operation Procedure ·····2-4	
2.4 Wake-up Battery (Rechargeable Battery) · · · 2-18	Chapter 5 APPENDIX ····· 5-1
2.5 Alarm Code 2-19	5.1 Standard Tightening Torque for Bolt and Flare Nut \cdots 5-2
2.6 Alarm Diagnosis ····· 2-22	5.2 Temperature Sensor Characteristics 5-3
2.7 General Diagnosis····· 2-45	● SS/RS/DSS/DRS/EIS/EOS/Eco In/Eco Out/SGS/AMBS · · · 5-3
	● DCHS Sensor Characteristics DCHS1/DCHS2 · · · 5-4
Chapter 3 PTI & Periodic Inspection 3-1	NTC type USDA Sensor Characteristics,
3.1 Pre-Trip Inspection	USDA1, USDA2, USDA3, CTS (Option) ····· 5-5
3.2 Manual Inspection ····· 3-3	ST9702-1 type USDA Sensor Characteristics,
3.3 Automatic PTI	USDA1, USDA2, USDA3, CTS (Option) ······ 5-6
3.3.1 Automatic PTI Step No. and Contents ··· 3-6	5.3 Pressure Sensor Characteristics5-7
3.3.2 Automatic PTI Alarm ······ 3-6	5.4 Humidity Sensor Characteristics, HuS (Option) \cdots 5-7
3.4 Periodic Inspection ····· 3-8	5.5 R134a Characteristics · · · · · 5-8
	5.6 Sequence5-9

SAFETY PRECAUTIONS

Always observe the following points before operating or inspecting a unit

DANGER

Always shut off the main power supply of the facility before disconnecting the power plug.

Always turn off the main power supply of the facility before inspecting the interior of the control box.

To inspect inside the inverter box, ensure to follow the instructions below.

- Ensure to leave the unit at least 10 minutes after turning off the circuit breaker before opening the cover of the inverter box.
- *This is because it takes time for the charge accumulated in the capacitor on the inverter board to be released.
- 2) Open the inverter box cover and ensure that the voltage between the terminal TP1 and TP2 on the inverter board is less than DC50V before starting inspection.

R134a should be used as refrigerant.

Be sure to prevent air from becoming mixed in with refrigerant, and never charge the equipment used for hydrostatic pressure tests with gas that contains air or O_2 .

If any other refrigerant not specified is charged, or charging procedure is not correct, it may explosions may occur.

⚠ WARNING

Do not touch the condenser fan while power to the unit is ON.

Before removing the condenser fan cover, turn off the circuit breaker and disconnect the power plug. During air-cooled operation: Condenser fan may start and stop automatically for the refrigerant high pressure control.

CLASS 1 PRODUCT SPECIFIED BY THE LAW CONCERNING THE RECOVERY AND DESTRUCTION OF FLUOROCARBONS

HFC IS USED FOR THIS PRODUCT AS A REFRIGERANT.

- Emission of fluorocarbons into the atmosphere without permission is prohibited.
- (2) Recovery of fluorocarbons is mandatory when scrapping and servicing this product.
- (3) The kind of fluorocarbon and its amount are stated in the manufacturer's label.

CAUTION

Wash the refrigeration unit with fresh water at PTI.

- 1. Carefully flush the external condenser with fresh water to remove the salt that sticks to it.
- Corrosive gases generated from the cargo may corrode the copper pipes and aluminum fin of the internal evaporator. Therefore, wrap up the cargo properly to prevent such corrosion.
 Major corrosive gases include chlorine, ammonia,

sulfuric acid, acetic acid, sulfur dioxide etc.

Securely close the control box cover.

Otherwise, it will allow water entry.

Use only Daikin specified refrigerant oil (IDEMITSU, Daphne Hermetic Oil FVC68D).

Open the oil can, just before charging the oil. Do not leave the can open for a long time to avoid moisture entry.

Using refrigerant oil which has absorbed moisture may cause problems with the unit.

Do not release refrigerant R134a into atmosphere. Use recovery machine according to present regulation.

Important information regarding the refrigerant

This product contains greenhouse gases covered by Kyoto Protocol.

Do not discharge refrigerant into atmosphere.

Refrigerant type: R134a GWP (1) value: 1430

(1) GWP=global warming potential

Chapter 1 Unit Specifications

- 1.1 Main Specifications
- 1.2 Set Point and Protection Device
- 1.3 Construction
 - 1.3.1 Outside View
 - 1.3.2 Inside View
 - 1.3.3 Control Box
 - 1.3.4 CPU Board and I/O Board
 - 1.3.5 Inverter Box
 - 1.3.6 Valves and Functions
 - 1.3.7 Sensor Location
 - 1.3.8 Printed Circuit Board
- 1.4 Operation Mode and Control
 - 1.4.1 Frozen Mode
 - 1.4.2 Chilled Mode
 - 1.4.3 Dehumidification Mode (Option)
 - 1.4.4 Defrost Mode
 - 1.4.5 Compressor, Fan Motor, Valve Function
 - 1.4.6 Common Control
- 1.5 Optional Functions
 - 1.5.1 ASC, Automatic Setpoint Change
 - 1.5.2 Cold Treatment Transport
 - 1.5.3 ACT, Automatic Cold Treatment
 - 1.5.4 Ventilator Volume Detection (FA Sensor)
 - 1.5.5 Remote Monitoring Receptacle
- 1.6 Battery Mode
- 1.7 Information Interchange with Personal Computer

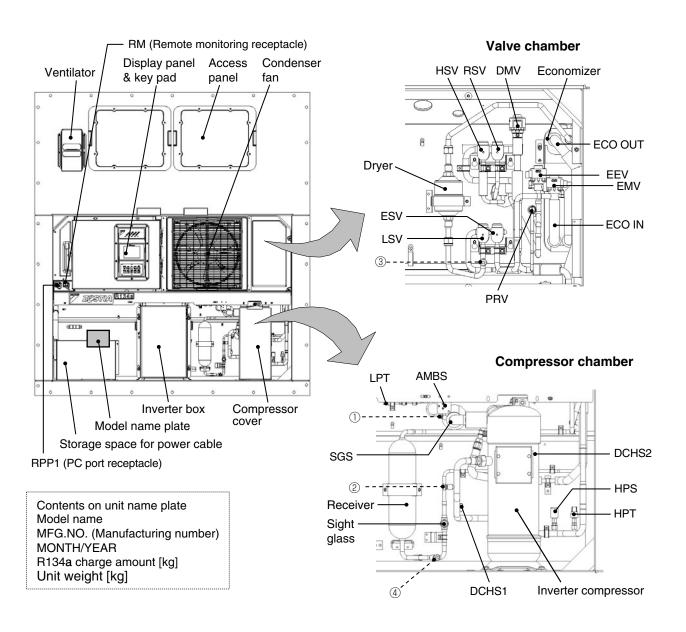
1.1 Main Specifications

	Item	Main Specifications		
Mode Switch	Chilled mode	+30.0°C ∼ -9.9°C (+86.0F ∼ -14.1F)		
Wiode Switch	Frozen mode	-10.0℃ ~ -30.0℃ (+14.0F ~ -22.0F)		
Condenser cooling	g system	Air cooling type		
Controller		DECOSVa		
Power source		Three phase 50Hz : 380/400/415V \sim 60Hz : 440/460V Voltage fluctuation rate should be within \pm 10%.		
Inverter compress	or	Hermetically sealed scroll type (MAX. motor output : 8.1 kW)		
Evaporator		Cross-fin coil type		
Air cooling conden	ser	Cross-fin coil type		
Evaporator fan Propeller fan		Propeller fan		
Evaporator fan motor		Squirrel-cage three phase induction motor (Motor output: 400W/60W), dual speed, 2P/4P		
Condenser fan		Propeller fan		
Condenser fan motor		Squirrel-cage three phase induction motor (Motor output: 670W/120W), dual speed, 4P/6P		
Defrosting system		Hot-gas defrosting system		
Refrigerant control E		Electronic expansion valve		
Capacity control		By inverter compressor and hot-gas control		
Refrigerant		R134a (For refrigerant charging amount, refer to the name plate)		
Refrigerant oil IDEMITSU, Daphne		IDEMITSU, Daphne hermetic oil FVC68D		
Weight For detail, refer to the name plate, unit performance				

●The resistance of solenoid coil

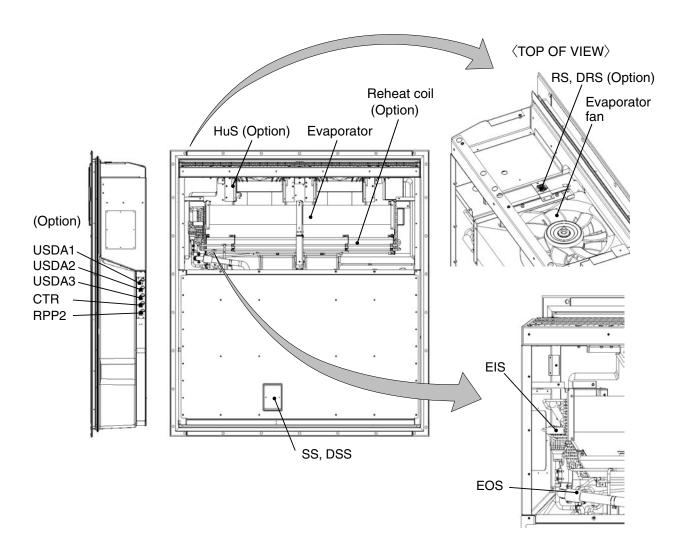
Component name	Coil Resistance
Compressor motor	0.90Ω±7% (20℃)
Condenser fan motor	High speed: $30.6\Omega\pm5\%$ (20° C) / Low speed: $21.6\Omega\pm5\%$ (20° C)
Evaporator fan motor	High speed: $23.0\Omega\pm10\%$ (20° C) / Low speed: $89.2\Omega\pm10\%$ (20° C)
Solenoid valve LSV, ESV, HSV, RSV	15.2 Ω±10% (20°C)
Modulation valve EEV, EMV, DMV	$46\pm3\Omega$ /phase (20°C)

1.2 Set Point and Protection Device


Component Name	Detector Symbol	Setting Value	Alarm
Lligh proceure quitab	LIDC	OFF≧2400kPa (24.47kg/cm²)	E101
High pressure switch	HPS	ON≦1900kPa (19.37kg/cm²)	F101
Pressure relief valve	PRV	Open≧2450kPa (25.0kg/cm²)	_
Fusible plug	_	95~100°C(203~212°F)	_
Built-in thermal protector	0414	OFF≧135°C±5°C(275°F±41°F)	
for condenser fan motor	Q1M	ON≦86℃±15℃ (187°F±59°F)	_
Built-in thermal protector		OFF ≧145°C±5°C (293°F±41°F)	
for evaporator fan motor	_	ON≦94℃±15℃ (201°F±59°F)	
Circuit breaker (ELCB)	СВ	30A (100mA)	_

● Fuse and Protection Circuit

Board	Fuse	Type Protection Circuit		Alarm
F1U			I/O board control power (DC13.5V, 5V, 3.3V)	_
I/O board (EC2)	F2U	F10A 250V fast-acting type	PCC1, PCC2, CFH, CFL, EFH, EFL HSV, RSV, LSV, ESV	F703 F707 E115 E117
	F3U		Spare	_
PT/CT board (EC7)	F11U	8A 600V PT/CT board control power		_
F5U			Surge absorber 1 (lightning surge protection) <non-replaceable></non-replaceable>	_
Noise filter board (EC9) F7U 12.5A 300A	Surge absorber 2 (lightning surge protection)	_		
	F7U		Surge absorber 3 (lightning surge protection)	_
F8U 8A 600V		8A 600V	Inverter control circuit <non-replaceable></non-replaceable>	_
I/O board			RM (Remote Monitoring) circuit <non-replaceable></non-replaceable>	_
(EC2)	TH2	Automatic reset	TransFresh circuit <non-replaceable></non-replaceable>	_


1.3 Construction

1.3.1 Outside View

[Sensor] AMBS : Ambient Temperature Sensor	LPT	: Low Pressure Transducer	PRV : Pressure Relief Valve [Service port]
DCHS1 : Discharge Gas	SGS	: Compressor Suction Gas	①Low Pressure (Gas line)
Temperature Sensor 1		Temperature Sensor	②High Pressure (Gas line)
DCHS2: Discharge Gas	【Valve		③High Pressure (Liquid line)
Temperature Sensor 2	DMV	Discharge Modulation Valve	4 High Pressure (Liquid line)
ECO IN : Economizer Inlet	EEV	: Electronic Expansion Valve	
Temperature Sensor	EMV	: Economizer Modulation Valve	
ECO OUT : Economizer Outlet	ESV	: Economizer Solenoid Valve	
Temperature Sensor	HSV	: Hot Gas Solenoid Valve	
HPS : High Pressure Switch	LSV	: Liquid Solenoid Valve	
HPT : High Pressure Transducer	RSV	: Reheat Solenoid Valve	

1.3.2 Inside View

[Sensor]

CTR : Cargo Temperature Sensor Receptacle

(Option)

DRS : Return Air Temperature Sensor for Data

Recorder (Option)

DSS : Supply Air Temperature Sensor for Data

Recorder

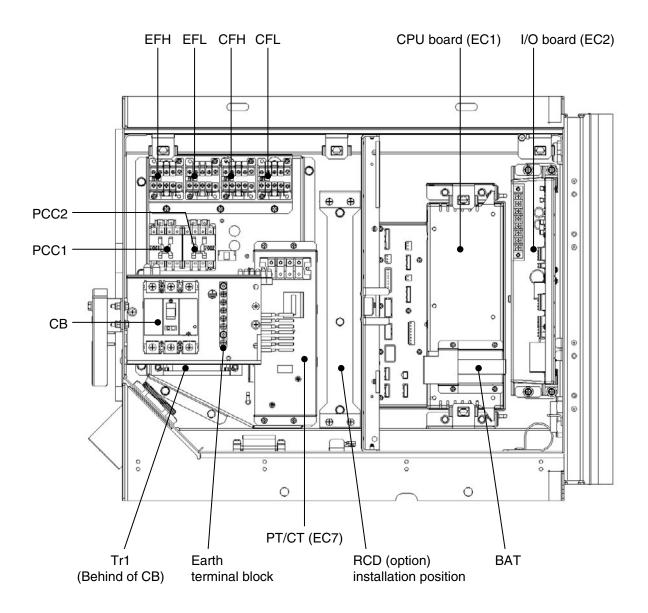
EIS : Evaporator Inlet Temperature Sensor EOS : Evaporator Outlet Temperature Sensor

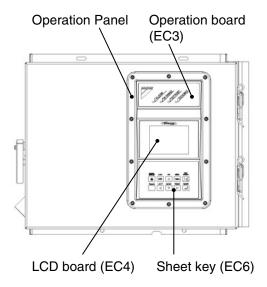
LOS L'Vaporator Outlet remperature Sens

HuS : Humidity Sensor (Option)

RPP2 : PC Port Receptacle (Option)

RS : Return Air Temperature Sensor


SS : Supply Air Temperature Sensor


USDA1 : USDA Sensor 1 Receptacle (Option)

USDA2 : USDA Sensor 2 Receptacle (Option)

USDA3 : USDA Sensor 3 Receptacle (Option)

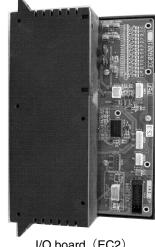
1.3.3 Control Box

BAT : Wake-up Battery (Rechargeable Battery)

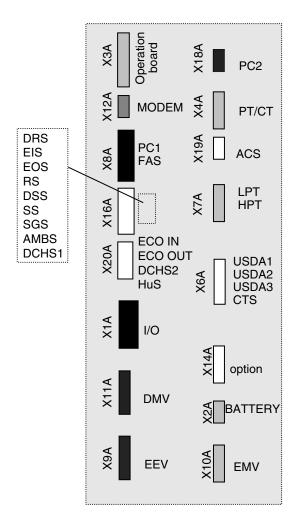
CB : Circuit Breaker (ELCB)

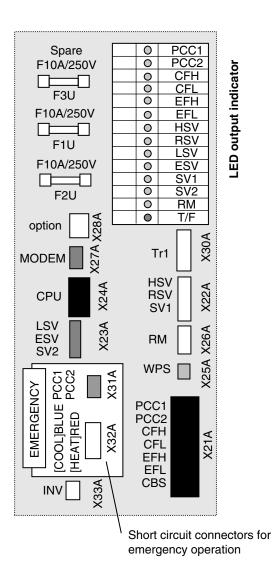
CFH : Magnetic Contactor, CFM high speed
CFL : Magnetic Contactor, CFM low speed
EFH : Magnetic Contactor, EFM high speed
EFL : Magnetic Contactor, EFM low speed

PCC1 : Phase Correction Contactor 1
PCC2 : Phase Correction Contactor 2

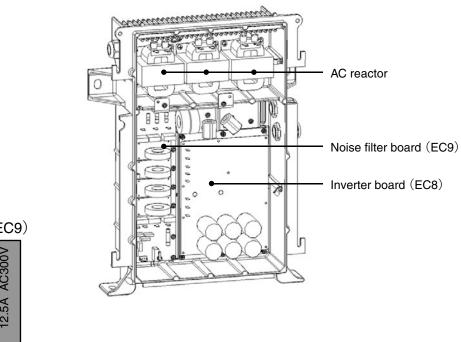

PT/CT : PT/CT Board RCD : Modem (Option)

Tr1 : Transformer for Operating Circuit

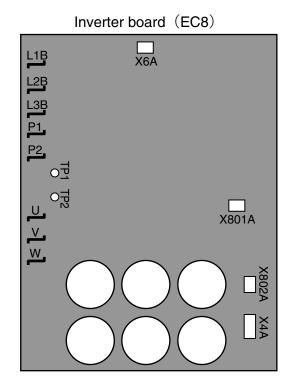

1.3.4 CPU Board and I/O Board



CPU board (EC1)


I/O board (EC2)





1-7

1.3.5 Inverter Box

Note: Wiring diagram for the unit including inverter circuit is put on back side of the control box cover.

1.3.6 Valves and Functions

EEV: Electronic Expansion Valve

EEV controls super heat at the evaporator outlet and controls the refrigerant supply amount to the evaporator by means of temperature sensors installed at the evaporator outlet and inlet.

DMV: Discharge Modulation Valve DMV is usually used at fully-open. However, while in defrosting operation, the opening is

adjusted as release control.

EMV: Economizer Modulation Valve

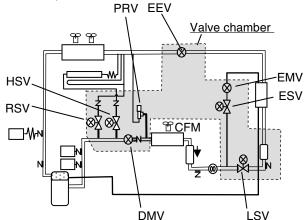
EMV controls the refrigerant supply amount to the economizer while in pull-down operation by adjusting EMV opening by means of the temperature sensors mounted at the economizer outlet and inlet. EMV is also used for the discharge pipe temperature control and charging control during defrost and heating operation.

ESV: Economizer Solenoid Valve Opening of ESV is synchronized with EMV.

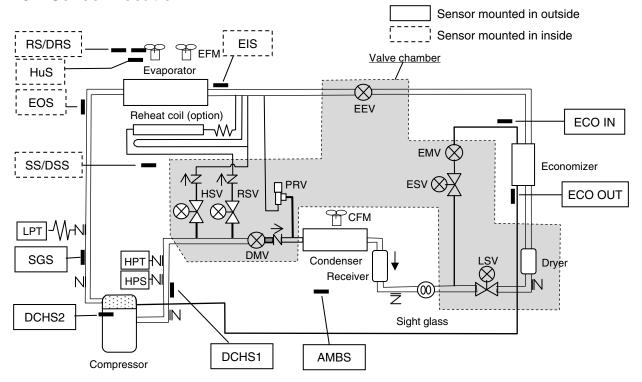
LSV: Liquid Solenoid Valve

LSV is opened while in compressor operation. It is closed while in defrost and heating operation and automatic pump-down.

HSV: Hot gas Solenoid Valve


HSV is opened while in defrost and heating operation to supply hot-gas from the compressor to the evaporator and drain pan. It is also opened to equalize the pressure to protect compressor in case of large pressure difference of high and low pressure while in compressor start up.

RSV: Reheat Solenoid Valve


RSV is opened while dehumidification control operation to supply hot-gas from the compressor to the reheat coil.

PRV: Pressure Relief Valve

PRV is mechanical type pressure release valve. It releases the refrigerant to the low pressure side when the pressure rises abnormally during non operation.

1.3.7 Sensor Location

1.3.8 Printed Circuit Board

●CPU Board (EC1)

Controller described in this manual as CPU board. CPU board equips micro-computer and controls unit with operation software installed.

All information required for the control is input to the CPU board.

- ① Sensor information (temperature, humidity, pressure) and power information (voltage, phase sequence, current) are input.
- ② Configuration items (factory set) in accordance with requirement for individual user's order are input.
- ③ For example Unit ON/OFF, SP change, etc are inputted by key operation.

In responding to these inputs, CPU board outputs commands to each part to operate unit with accuracy.

- ① to modulation valves, solenoid valves and magnetic contactors
- 2 to inverter board
- 3 to LCD display

Operation data is stored for 2 years (Logging interval 60 minutes). The data can be downloaded using a PC which has the DCCS software installed or with a USB memory.

When power OFF, some of setting work and data indication can be available by wake-up battery power (Rechargeable battery). Data download and software upload are also possible. (Refer battery mode in paragraph 2.3)

Use Daikin spare parts for CPU board replacement. After replacement, configuration items are transmitted from operation board. Set controller time in accordance with setting request displayed

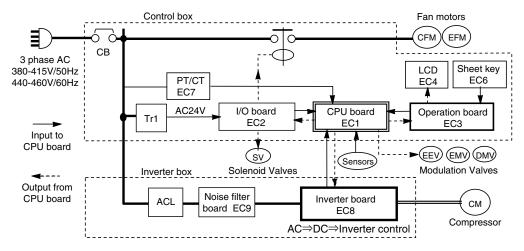
on LCD. Install the latest operation software downloaded from web site.

●I/O Board (EC2)

I/O board converts AC24V power from control transformer Tr1 to DC13V/DC5V and supply it to CPU board.

I/O board energizes magnetic contactors for fan motor EFM, CFM and phase correction contactor PCC1 or 2 by receiving order from CPU board. At the same time, LED lamps wired in parallel with them are energized and lighted ON. That is convenience with service work.

Operation Board (EC3)


Operation board receives input from keyboard and transmits it to LCD board and CPU board. On the other hand it transmits signals from CPU board to LCD board.

If communication between operation board and CPU board is failed, operation board judges to display "Communication Interrupted" on LCD and alarm E903 is shown on trip report.

Configuration items factory set to CPU board have been copied to operation board. When CPU board is replaced, these items are transmitted to CPU board.

●Inverter Board (EC8)

Inverter board changes frequency of power source and controls compressor speed. Inverter board receives command of rotation speed value from CPU board. The operating condition during inverter control (compressor overload, power supply condition and actual frequency etc.) are transmitted to CPU board. The judgment for operation continuing and stopping is conducted by CPU board. Output from inverter is made of frequent switching control by power module and results to creating high temperature. Radiator fin constructed outside inverter box.

1.4 Operation Mode and Control

1.4.1 Frozen Mode

Set Point and Control Temperature Sensor

Unit operates in frozen mode between Set Point -10.0 $^{\circ}$ C $^{\circ}$ C -30.0 $^{\circ}$ C. The temperature control in frozen mode is controlled by the return air temperature sensor (RS).

Display

FROZEN is displayed on the upper left and FULL COOL, or COOLING OFF is displayed on the upper

FROZEN	FULL COOL
SET POINT	SET-MODE
-18.0C	
RETURN	
_17.0C	
SUPPLY -18.6C	DEF-INT 12HR
HP:1200kPa ♦	LP: 20kPa

right of the screen. RETURN temperature (RS) is displayed under SET POINT.

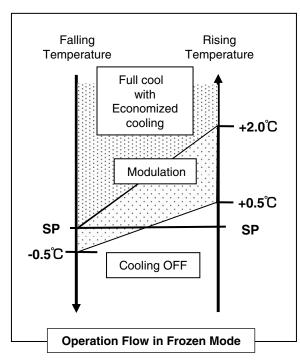
Operation mode

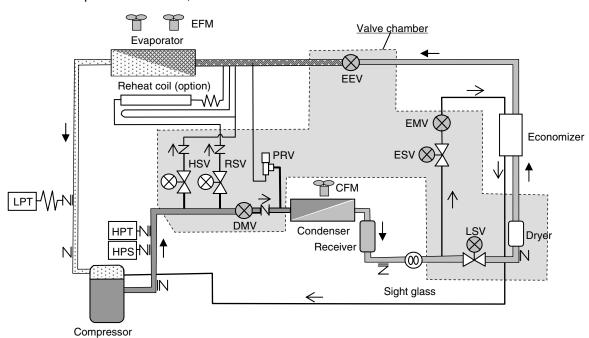
FULL COOL < Pull down >

Compressor runs at full capacity during pull-down operation. ESV opens to activate economizer circuit, then pull-down capacity is increased by subcooling the liquid refrigerant entering EEV. EFM runs at high speed but it runs low speed when RS drops to -5.0° C .

FULL COOL < Modulation >

When RS drops to ≦SP, unit will enter to the modulating cooling. Compressor speed is modulated in response to temperature difference between RS and SP.


COOLING OFF


When RS still drops to \leq SP-0.5°C, unit will enter

to Cooling OFF. Compressor stops and EFM continues to run at low speed. If temperature rises to $\geqq SP+0.5\,{}^\circ\!C$, the unit will return to the modulated cooling.

Condenser Fan Motor, CFM

CFM will run with high, low or OFF in response to high pressure (HPT). (High Pressure Control)

1.4.2 Chilled Mode

Set Point and Control Temperature Sensor

Unit operates in chilled mode between Set Point $+30.0^{\circ}$ C \sim -9.9°C controlled by the supply air temperature sensor (SS).

Display

CHILLED is displayed on the upper left and FULL COOL, MODULATION, COOLING OFF or HEATING is displayed

CHILLED	MODULATION	
SET POINT	SET-MODE	
0.0C	DEHUMID	
SUPPLY	USDA	
_0.1C		
RETURN 2.0C	DEF-INT 12HR	
HUMID 75%RH	SET-HU 70%RH	
HP:1200kPa ♣	LP: 20kPa	

on the upper right of the screen. SUPPLY temperature (SS) is displayed under SET POINT.

Operation mode

FULL COOL < Pull down >

Compressor runs at full capacity, ESV opens and economizer is activated. EFM runs with high speed.

MODULATION

When SS drops to \leq SP, unit will enter to modulation. Compressor speed is adjusted in response to difference temperature between SS and SP.

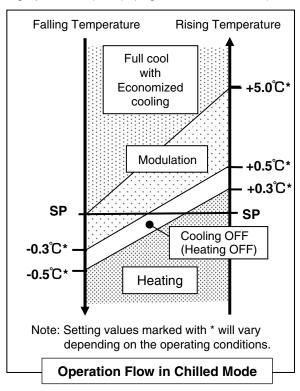
COOLING OFF (HEATING OFF)

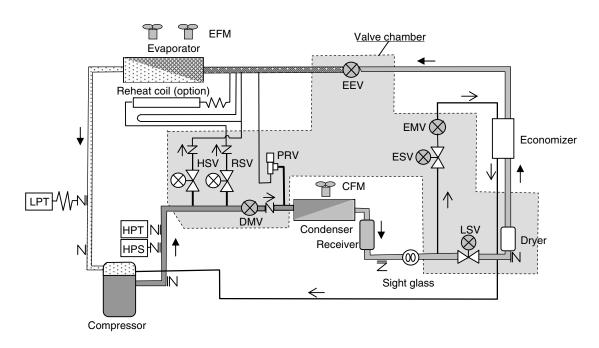
When SS drops to \leq SP-0.3°C (%), unit will enter to the Cooling OFF and compressor stops. If SS temperature rises to \geq SP+0.5°C (%), the unit will return to modulation.

EFM runs with high or low speed in response to SS. (*: Control value varies depending on operating condition.)

HEATING

When SS is \leq SP-0.5°C (\otimes), unit will be in heating operation. A hot gas is adopted for the heat source.


The operation is same as defrost mode except EFM runs with high speed.


Evaporator Fan Motor, EFM

EFM runs at High or Low speed in Modulation as mentioned above.

Condenser Fan Motor, CFM

CFM will run with high, low or OFF in response to high pressure (HPT). (High Pressure Control)

1.4.3 Dehumidification Mode (Option)

Dehumidification operation reduces the internal relative humidity using the reheat coil that heats up the air cooled by the evaporator.

Heat source of the reheat coil, like the defrosting operation, uses high temperature refrigerant (hot gas) discharged from the compressor.

This control is optional, and available for only the unit equipped with a reheat coil.

The unit equipped with a reheat coil is set to "ON" at factory referring to *12 Configuration Setting in paragraph 2.3.

Setting for dehumidification operation

To execute dehumidification operation, selecting the dehumidification operation set to "ON", (ON-A), or (Bulb) is necessary.

ON: When dehumidification operation is executed ON-A*:When dehumidification operation is executed for the unit without humidity sensor

Bulb*: When dehumidification operation is executed in the Bulb mode

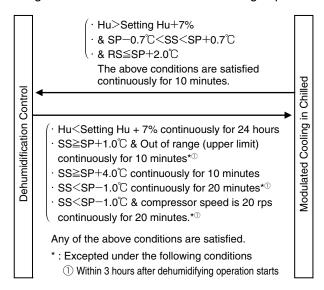
OFF: When dehumidification operation is not executed * Optional functions

Display

After the settings are complete, DEHUMID will appear at the right side of the screen.

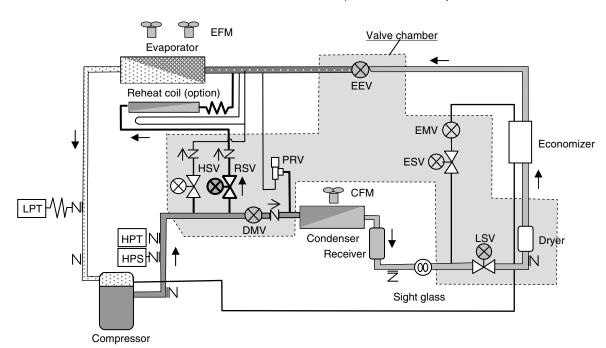
LED display

The DEHUMID indicator (yellow) lights.


Dehumidification Operation

Dehumidification operation starts when the following conditions are met during modulated cooling in the chilled mode.

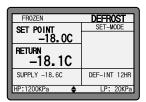
Hu>Setting Hu+7% & SP-0.7 $^{\circ}$ C<SS<SP+0.7 $^{\circ}$ C & RS≦SP+2.0 $^{\circ}$ C


The above conditions are satisfied continuously for 10 minutes.

When dehumidification operation starts, it supplies hot gas to the reheat coil. EFM runs at high speed.

●Cancellation of Dehumidification operation

- 1) Set dehumidification operation to "OFF"
- 2) 72 hours elapse after power OFF
- 3) F-PTI completed
- 4) Chilled PTI completed
- 5) Frozen PTI completed


1.4.4 Defrost Mode

●Hot-Gas Defrost System

A hot gas system is adopted for the heat source; I.e. the high temperature and high pressure refrigerant discharged from the compressor is supplied to the evaporator and drain pan for defrosting. Since the ice built on the evaporator is directly and evenly heated up from the inside, defrosting can be efficiently performed.

Display

"DEFROST" is displayed on the upper right of the screen.

LED display

The DEFROST indicator (orange) lights.

Defrost operation

The pump-down operation is executed by closing EEV and opening DMV first.

Then the defrost operation will start by closing DMV and opening HSV and hot gas is supplied to the evaporator and drain pan. During defrosting, the compressor speed is adjusted in order to maintain the optimum hot gas temperature. (High Pressure Constant Control). Release control (DMV open, CFM ON) or charge control (ESV and, EMV open) may be carried out depending on the operating conditions. After termination of defrosting, normal temperature control operation will start. However, the delay timer will cause the evaporator fan to remain stopped for a maximum of 3 minutes.

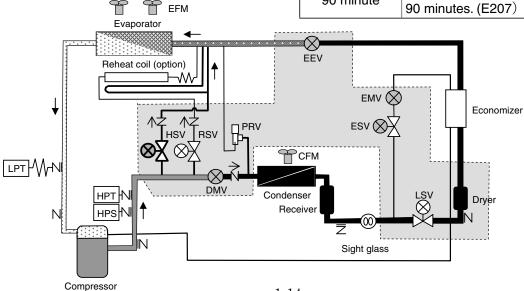
In-Range masking

The control temperature temporarily becomes outrage during defrosting, but the IN RANGE LED is kept ON.

This will avoid misunderstanding that there will be a problem if the IN RANGE LED is turned OFF.

Defrost Initiation

	Short timer	6Hr (12Hr when RS<-15℃)	
Pull-down Automatic detecting		When supply air temperature does not drop 0.2℃ per 1 hr in frozen mode.	
	Defrost interval setting	Defrost interval setting "3, 6, 9, 12 or 24" Hr	
In-Range	Out-range timer	Executed by 30 min. timer after the control temperature rises out of in-range.	
Manual De	frost	Executed by Manual defrost key.	


Defrost Initiation Conditions

Timer Count-down	Initiation Conditions	
Defrost interval (Frozen)		
Short timer	EOS≦20.0°C	
Out-range timer	EUS≧20.0 U	
Manual defrost		
Define at internal (Chilled)	EOS≦20.0°C	
Defrost interval (Chilled)	& EIS<5.0 ℃	

If the initiation conditions are not satisfied when timer counts down, the defrosting will not be initiated. If "AUTO" is selected, defrosting will be executed automatically in accordance with the accumulation of ice on the evaporator coil.

Defrost Termination Conditions

Defrosting Time	Termination Conditions
<45 minute	EOS≥20°C & (RS≥5°C or RS≥5°C with 10 min. elapse if RS<-20°C at defrost initiation)
≧ 45 minute	EOS≥25°C & (RS≥15°C or RS≥5°C with 10 min. elapse if RS<-20°C at defrost initiation)
90 minute	Defrost is forcibly terminated at 90 minutes. (E207)

1-14

1.4.5 Compressor, Fan Motor, Valve Function

●Frozen Mode

Component Name			Full Cool	Modulation	Cooling OFF
	Compressor	CM※7,8	Max.130 rps	20~130 rps	OFF
Motor	Evaporator fan motor	EFM	H (L %1)	L	L
	Condenser fan motor	CFM	H/L/OFF %2	H/L/OFF ※2	OFF
Solenoid Valve	Liquid solenoid valve	LSV	ON	ON	OFF
	Economizer solenoid valve	ESV	ON	ON	OFF
	Hot gas solenoid valve	HSV	OFF	OFF	OFF
	Reheat solenoid valve	RSV	OFF	OFF	OFF
Modulation Valve	Electronic expansion valve	EEV%8	2~100%	2~100%	0%
	Economizer modulation valve	EMV%8	2~100%	2~100%	0%
	Discharge modulation valve	DMV%8	100%	100%	100%

----- Notes -----

- %1 EFM operates at RS≦-5.0°C
- %2 High pressure control
- ※3 EFM operates
 H only or
 H/L change
 automatically

EEV fully open: 420 pls EMV fully open: 300 pls DMV fully open: 760 pls

Chilled Mode

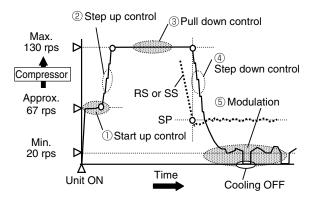
Chilled Mode							
Component Name		Full Cool	Modulation	Cooling OFF	Heating		
	CM%7, 8	Max.130 rps	20~130 rps	OFF	20∼95 rps		
Motor	EFM	Н	H/L ※3	H/L	H/OFF		
	CFM	H/L/OFF ※2	H/L/OFF ※2	OFF	OFF (L/H %5)		
	LSV	ON	ON	OFF	OFF (ON/OFF %4)		
Solenoid	ESV	ON	ON/OFF	OFF	OFF (ON %4)		
Valve	HSV	OFF	OFF	OFF	ON (ON/OFF %4,5)		
	RSV	OFF	OFF	OFF	OFF		
	EEV%8	2~100%	2~100%	0%	0% (0~36% %4)		
Modulation Valve	EMV%8	2~100%	2~100%	0%	0% (24~24% ¾4)		
	DMV※8	100%	100%	100%	0% (0~100% % 4) (13~100% % 5)		

Dehumidification mode

Dehumid.			
20∼95 rps			
Н			
H (L/OFF %6)			
ON			
OFF			
OFF			
ON			
2~100%			
0%			
20~100%			

Defrost Mode

Component Name		Pumpdown	Defrost
	CM※7, 8	Max.50 rps	20∼95 rps
Motor	EFM	H/L/OFF ※2	OFF
	CFM	Н	OFF (L/H %5)
	LSV	ON	OFF (ON/OFF %4)
Solenoid	ESV	OFF	OFF (ON %4)
Valve	HSV	OFF	ON (ON/OFF %4,5)
	RSV	OFF	OFF (ON/OFF %4,5)
	EEV%8	0%	0% (0~36% ¾4)
Modulation	EMV%8	0%	0% (0~24% %4)
Valve	DMV%8	100%	0% (0~100% %4) (13~100% %5)


----- Notes -----

- ¾4 Charging control
- **%**5 Release control
- %6 CFM may become L/OFF in some case to increase dehumidification capacity.
- ※7 Compressor may reduce its rotation speed prior to take protection control when the protection control activated in some reason.
- **8 Compressor rotation speed (rps) and EEV, EMV, DMV opening (pls) are displayed in panel. (Refer to **3 Sensor information in paragraph 2.3.)

1.4.6 Common Control

●Compressor running control

Compressor changes speed Min. 20 rps to Max. 130 rps with inverter control.

①Start up control

After unit switch ON, unit goes to calibration valves at first and compressor start up control. Start up control is to protect liquid back condition due to unit stops for long time under low ambient temperature. It is controlled with three steps: (1) pump down operation, (2) operation not in wet conditions 1, (3) operation not in wet conditions 2. Although it normally completes in several minutes, sometimes it takes almost 20 minutes if totalizing the time of guard timer at each step.

2Step up control

After completion of start-up control, the rotation speed will increase to the maximum speed of the pull down operation by having a few steps. It takes approximately two minutes.

3Pull down control

It runs at the maximum rotation speed (130 rps) during pull down. When some cause makes the protection control activated, the rotation speed may decrease, giving a high priority on the protection control.

4 Step down control

When the control temperature RS (frozen) or SS (chilled) reaches the setpoint temperature SP, the rotation speed of the compressor will be slowed down gradually. It takes two to three minutes.

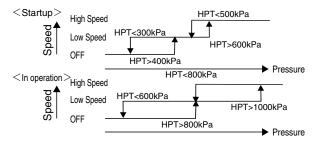
(5) Modulation

When the control temperature RS or SS reaches SP, the modulated control starts, and the compressor controls rotation speed in response to temperature difference between RS (or SS) and SP. (at the speed of as low as 20 rps)

The compressor stops at small heat load condition.

Calibration valves

Turning the unit switch into ON triggers initial operation for calibrating valves EEV, EMV, and DMV. EEV and EMV are fully opened (420pls) then fully closed (0pls). DMV is fully opened (760pls), then fully closed (0pls) and fully opened (760pls) again. The change of valve opening can be checked on the LCD screen. Operate keys immediately when the operation screen is displayed. The operation of the modulation valve coils can be checked during maintenance. (Refer to 3 Sensor information in paragraph 2.3.)


Compressor protection control

When an operating status phenomenon is detected, rotation speed of the compressor will gradually slow down to protect the compressor. It will resume to normal operation when the operation status returns to normal. Three examples follow.

- 1. Suppression control of high-pressure increase starts at HPT≧2110kPa.
- 2. Suppression control of low-pressure decrease starts at LPT≦-50kPa.
- 3. Suppression control of discharged-gastemperature increase starts at DCHS $\geqq 117^{\circ}C$.

High pressure control

When ambient temperature is low, the high pressure will decrease. Accordingly, the low pressure will decrease too. In order to prevent this situation, optimum pressure is maintained by switching the condenser fan between OFF⇔Low speed⇔High speed based on the high pressure value.

- * The control values described above may vary depending on operation status.
- * CFM stops for ten seconds when switching from high speed to low speed.

Pump down control

Pump down with EEV closed before defrosting initiation, before heating operation, or during the start-up control of the compressor. Collect refrigerant into the receiver, and terminate the pumping-down when the low pressure becomes -40kPa (or EOS-LP(T)>30 $^{\circ}$ C).

Automatic pump down

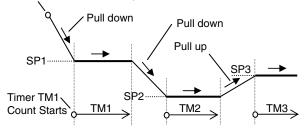
Automatic pump down is executed by pump down with the LSV closed before replacement of dryer or collecting refrigerant. Terminate pump down when low pressure becomes -27kPa.

Then open HSV to raise the pressure on the low pressure side slightly higher than atmospheric pressure so that replacing the dryer afterwards can be done easily. (Refer to paragraph 4.2. Automatic Pumpdown)

1.5 Optional Functions

1.5.1 ASC, Automatic Setpoint Change (Option)

ASC operation

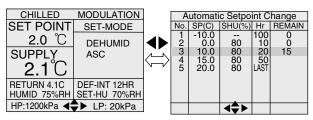

This function works only in the chilled mode. It can be possible to improve quality for some types of cargo by automatically changing the set temperature over time.

ASC function can specify the set temperature and its duration automatically.

Setting for ASC operation

- 1. The first set temperature SP1 and its duration TM1
- 2. The second set temperature SP2 and its duration TM2
- Since, up to 9 patterns are available for setting temperature (i.e.up to SP9). There is no duration limit by the timer for the last set temperature.
- * For some types of cargoes, dehumidification control settings can be configured as well.
- * The temperature inside is raised gradually (0.5°C /Hr) to prevent rapid temperature rise during the pull up operation.

ASC function starts to operate


• Access to ASC operation

Access to &2-5 ASC settings for ASC operation in paragraph 2.3.

Display

During ASC operation "ASC" is displayed in the SET-MODE area.

Press or key to check the ASC status during operation display. The example below that among five sets of temperature settings, the third set is in operation remaining 15 hours.

Operation screen

ASC screen

Cancellation of ASC operation

- 1. Cancellation of ASC operation
- 1) When configuring ASC to "OFF"
- 2) When F-PTI is completed
- 3) When Chilled-PTI is completed
- 4) When Frozen-PTI is completed
- When the power is turned off (unit off) during ASC operation, ASC operation restarts at next power-on.
- 3. It is impossible to change the set temperature and the set duration during ASC operation. To change the settings, configure ASC settings to "OFF" once and "ON" again.
- The last set temperature is displayed on the modem. The settings cannot be changed via the modem.
- 5. The following items are recorded as event log: ASC "ON" / "OFF", SP1, TM1, dHU1, "ON" / "OFF", RH1, SP2 ----, SP3 ---

1.5.2 Cold Treatment Transport

Units equipped with USDA receptacle can perform cold treatment transport in conformity with USDA. Regarding cold treatment transport, note the followings.

Setting of USDA sensors

4: 4 USDA sensors connected

3:3 USDA sensors connected

AUTO: Automatically recognizes the number of USDA sensors (Note 1)

OFF: No USDA sensor connected

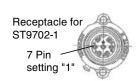
Note 1. USDA sensor can record the temperature ranging from -30.0°C to $+40^{\circ}\text{C}$.

It does not meet the USDA standards.

Refer to paragraph 2.3 %2-4 USDA setting

●USDA sensor calibration

USDA sensor must be calibrated for each transportation. Connect the PC with installed DCCS software and operate according to procedure. For detail, refer to operation manual for personal computer software.


Checking USDA sensor type setting

USDA sensor type includes "NTC (Standard)" type and "ST9702-1" type.

If a hugely different calibration value is obtained at calibration, it is possible that USDA sensor type is incorrect.

Check with the drawings below since the receptacles vary depending on the sensors.

Access to setting confirmation: ¾4 Configuration

Set Information in paragraph 2.3.

Access to setting change : %12 Configuration Set in paragraph 2.3.

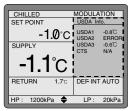
OUSDA report

Temperature record data during cold treatment transport can be prepared in the format in conformity with USDA standards which is downloadable from the PC that installed DCCS software. For detail, refer to operation manual for personal computer software.

Checking survival voltage of the wake-up battery

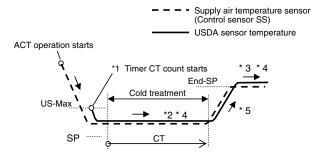
Temperature data must be recorded for at least 72 hours after the power is turned off. Check the survival voltage of the wake-up battery (Rechargeable battery) connected to controller prior before transport.

The survival voltage can be checked in the battery mode (**15 Data information (Battery mode) in paragraph 2.3) or during operation (**3 Sensor Information in paragraph 2.3).


•Indications during USDA operation

During USDA operation, the SET-MODE area will change to "USDA INFO" every 5 seconds, and the USDA sensor value will be displayed. (Diagram below)

Current supply / return air temperature and each USDA sensor values are shown on LCD display automatically without press any operation key.



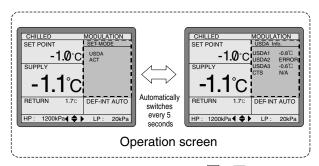
1.5.3 ACT, Automatic Cold Treatment • ACT operation

When cold treatment is completed during USDA transport (when the standard period has passed with the standard pulp temperature kept equal to or less than the base temperature), ACT function switches the temperature to the preset temperature automatically to continue the operation.

To activate ACT, the following 4 items must be set.

- 1. Cold treatment period CT (day)
- 2. Maximum pulp temperature US-Max (°C)
- 3. Set temperature during cold treatment SP (°C)
- 4. Set temperature after cold treatment is completed End-SP ($^{\circ}$ C)

- *1 When all USDA sensor temperature has dropped lower than US-Max, CT-day starts to count.
- *2 When the temperature exceeds US-Max during cold treatment, which results in data logged, CT counting is cancelled. When the temperature dropped lower than US-Max, again, counting starts to recount cold treatment days (CT day).
- *3 After cold treatment is completed, the operation starts at End-SP setting temperature.
- *4 SP and End-SP can be changed during ACT operation (CT day and US-Max can not be changed)
- *5 The temperature is raised gradually (0.1℃ per hour) to prevent rapid temperature rise.)


Access to ACT operation

Access to %2-6 ACT setting in paragraph 2.3.

Indications during ACT operation

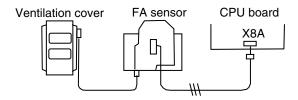
During USDA operation, "ACT" is displayed in the SET-MODE area.

The SET-MODE area will change to "USDA INFO" every 5 seconds, and the current USDA sensor value will be displayed. (Figure below)

When the por key is pressed, the ACT setting status and the current operating status can be checked.

ACT screen

Cancellation of ACT operation


- 1. Cancellation of ACT operation
 - 1) When ACT is set to "OFF"
 - 2) When F-PTI is completed
 - 3) When Chilled PTI is completed
 - 4) When Frozen PTI is completed
- 2. Power off (unit off) during ACT operation and operations when restarting

Stop time	ACT operation when restarting	
Less than 1 hour	ACT continues	
1 hour or more to	CT counting is reset and ACT	
less than 48 hours	restarts	
48 hours or more to	ACT continues with End-SP.	
less than 72 hours	ACT continues with End-SP.	
72 hours or more	ACT cancelled	

1.5.4 Ventilator Volume Detection (FA Sensor)

Sometimes FA (Fresh Air) is taken in with the ventilator opened in the chilled mode. The FA volume can be displayed on the LCD screen or recorded as log with the FA sensor. When the ventilator is opened in the frozen mode, alarm E807 is displayed.

The wire reel mechanism and position meter are installed inside of the FA sensor. The wire is connected to the ventilator outlet cover so that the movement of the cover opening and closing is converted into the variation of voltage to send to the controller.

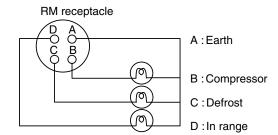
Either "Ventilator with insect screen" or "Ventilator without insect screen" is set for the unit installed with FA sensor at factory referring to %12 Configuration Set in paragraph 2.3.

Setting of ventilation volume (FA volume)

Conduct the setting of ventilation volume after the completion of the FA sensor calibration. FA sensor characteristic differs between the ventilator opening and closing. To display accurate FA volume, make sure to follow the procedure of manual. Refer to % 18 FA sensor calibration in paragraph 4.1.

Event log recording

FA volume (m3/h) is recorded as event log at the following timings.


- 1. At FA setting, at FA change
- 2. 0:00 am (Once a day)
- 3. When the unit starts to run

1.5.5 Remote Monitoring Receptacle

Able to install receptacle for remote monitoring on front of the unit.

In case of connect remote monitoring cable, below operation conditions are transferred to main board.

- 1. Compressor running
- 2. Defrost
- 3. In-range

1.6 Battery Mode

When the unit is not connected to the power source, following work can be done with battery mode function.

If the wake-up battery is not sufficiently charged, the function may not operate.

Setting functions

Unit ON/OFF Defrost interval
Temperature setting Humidity setting

Display function

Return air temperature display (RS)
Supply air temperature display (SS)
High pressure (HPT)
Low pressure (LPT)
USDA 1, USDA 2, USDA 3 temperature
CTS temperature
Ventilation volume (FA)
Remaining battery voltage
PTI record (Latest 5 times PTI operation day)

● Alarm Record

Software version

Display alarm generated for maximum 180 days.

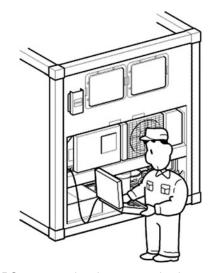
Trip Chart

Indicate trip chart in a graphic display for maximum 90 days.

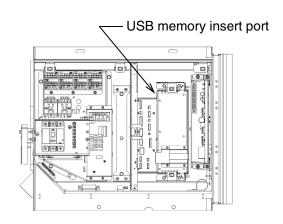
●USB Menu

Data download or upload is possible by connecting USB memory.

1.7 Information Interchange with Personal Computer


The electronic controller has an internal memory function to record the set point temperature, refrigeration temperature, operation mode, alarm and the report of automatic PTI during transportation in addition to the normal operation control.

Data download

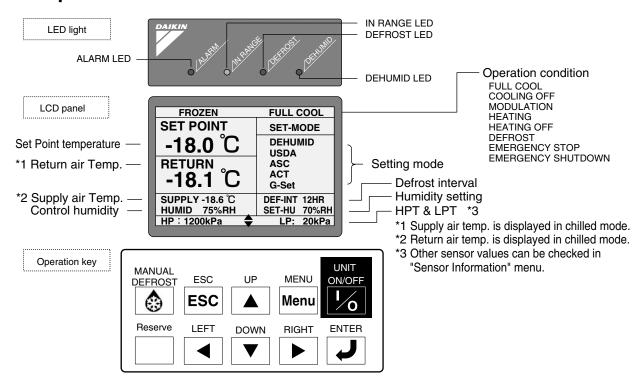

Data records can be downloaded by connecting a PC to the communication port. Furthermore, all of the recorded data inside the controller can be downloaded by inserting a USB memory into the connection port of the controller.

Software upload

The software in the controller can be updated by uploading software using a PC or USB memory. The use of a PC also enables the container number, cargo description, destination and other information to be sent to and memorized in the controller.

PC connected to the communication port

USB memory connected to the controller

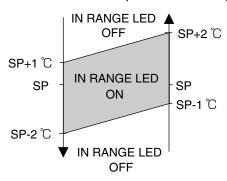

	Description	PC connection	USB memory connection	
		FULL TRIP	1	
	Trip report	LAST ONE TRIP	1	✓
	Trip report	TRIP BY DATE	✓	
Download		TRIP BY TRIP	1	All data are downloaded
	PTI report		1	in a lump.
	USDA report		✓	
	Monitoring report		1	✓
Upload	Software upload		1	✓
	Container No. etc.	upload	1	

- Note 1. Download the file with authentication into a USB memory from the web site.
 - 2. See %14-1 and %14-2 menu in paragraph 2.3 for the procedure of downloading and uploading by connecting a USB memory.
 - 3. When you see the downloading data from USB memory by PC, install the DCCS software (ver. 9 series) in advance.

Chapter 2 Controller

- 2.1 Operation Panel
- 2.2 Controller Functions List
- 2.3 Operation Procedure
- 2.4 Wake-up Battery (Rechargeable Battery)
- 2.5 Alarm Code
- 2.6 Alarm Diagnosis
- 2.7 General Diagnosis

2.1 Operation Panel



●ALARM LED (Red)

ALARM LED blinks in case of F alarms or E807 and E304.

●IN RANGE LED (Green)

Lights when the control temperature is in range.

DEFROST LED (orange)

Lights when defrosting control is being carried out.

● DEHUMID LED (yellow)

Lights when dehumidifying is set to ON (including ON-A and Bulb settings).

Function of operation key

To start or to stop the unit operation. If the power supply is cut off while the unit is on, and the power supply is then turned on again, the unit automatically starts the operation without pressing this key again.

- Scroll up or down to select an item
- Determine the setting item

- Scroll right or left to select an item
- Move to next or previous screen

- To move to Battery Mode display when no power is supplied
- To move to Initialize Menu display after unit ON/OFF key "ON"
- To move to Menu display while the unit is in operation

• To determine the setting contents

 Returns from the display contents to the previous screen.

 To carry out manual defrost operation

2.2 Controller Functions List

The controller installed in this unit has following functions. Access to the pertinent item in following pages for detail.

Items			Functio	n	Paragraph No.
	Temperature S	2.3 ※1, 2-2, 2-3			
Setting	Defrost Interval AUTO or 3, 6, 9, 12 or 24Hr				2.3 ※2-1
	ASC (Automati	c Set-point Chan	ge)		2.3 ※2-5
	USDA				2.3 %2-4, 1.5.2
	ACT (Auto Cold Treatment)			2.3 ※2-6, 1.5.3	
	Fan Speed Cor	Fan Speed Control			2.3 ※2-8
	G-Set (Power limit setting for Gen set operation)				2.3 ※2-7
PTI	Short PTI, Chill	led PTI, Frozen F	PTI, Full P	TI	3.3
			PCC1, P	CC2,	
Service		ON/OFF check	CFH, CF	L, EFH, EFL with motor current	4.1 %1~%10
		ON/OFF CHECK	display H	SV, RSV, LSV, ESV	
	Manual		RM Circu	iit Check	4.1 ※11
	Check	HuS Reading			4.1 ※12
		Sensor Calibrat	ion	SS, DSS, RS, DRS, FA	4.1 %13~%18
		Trip Start Time and reset			4.1 ※19
		Running hours	and reset	CM, EFH, EFL, CFH, CFL	4.1 %20~%24
		(Air) SS, DSS, RS, DRS, Hus, AMBS (Cargo) USDA1, 2, 3, CTS			
	Sensor Information	(Ref.) EIS, EOS, DCHS1 & 2, SGS, ECO-IN, ECO-OUT			
		(Ventilation) FA (Pressure) HPT, LPT			2.3 ※3
		(Power) Battery Voltage, Supply Voltage, Total & Comp.			
		Current			
	Service	Trip Chart, Trip Report, PTI History, Alarm Record			2.3 %5
	Menu	Automatic Pump-down			2.3 ※5-5
		Monitoring Data logging			2.3 ※5-6
	LCD Back Ligh	2.3 %6 2.3 %7			
		Unit Convert			
	Manual Defrost				2.3 %8
	Current Alarm				2.3 ※9
Data Dow	rnload, Software	Upload using U	SB memo	<u>,</u>	2.3 ※14
_		Setting		Unit ON/OFF	2.3 %15
Battery	Data	. .		SP, Humidity SP, Defrost Interval	- · · · · · · ·
Mode	Information		r	SS, RS, USDA1, 2, 3, CTS, FA,	0.0 3// 2=
		Sensor Informa	tion	HPT, LPT	2.3 ※15
		DTI Higham Caf	ftwore Ve	Battery Voltage	0.0 × 15
	Alauma Danie I	PTI History, Sof	iware Ver	SION	2.3 %15
1	Alarm Record,	· ·		100	2.3 %15
	Data Download, Software Upload using USB memory				2.3 ※14

2.3 Operation Procedure

Using the operation keys on the operation panel, the following settings and sensor information, etc. are displayed.

%1 Set Point temperature Change

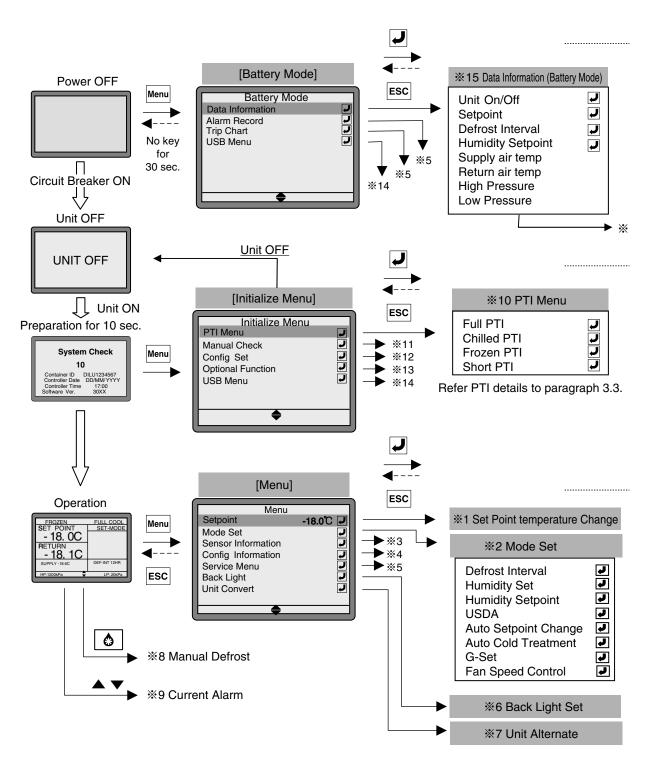
%2 Mode Set

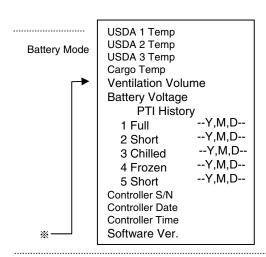
%3 Sensor Information

¾4 Configuration Information

%5 Service Menu%6 Back Light Set

%7 Unit Alternate


※8 Manual Defrost


%9 Current Alarm
%10 PTI Menu

%11 Manual Check

※12 Configuration Set

%14 USB Menu

PCC1 ON/OFF
PCC2 ON/OFF
CFH ON/OFF
CFL ON/OFF
EFH ON/OFF
HSV ON/OFF
RSV ON/OFF
LSV ON/OFF
ESV ON/OFF
RM ON/OFF
HuSReading

All Sensor Calibration
SS Sensor Calibration
RS Sensor Calibration
DSS Sensor Calibration
DRS Sensor Calibration
FA Calibration
Trip Start Time
Comp Running Hrs
EFH Running Hrs
EFL Running Hrs
CFH Running Hrs
CFL Running Hrs

Refer manual check details to paragraph 4.1.

Operation ※3 Sensor Information

Supply air temp
Return air temp
High Pressure
Low Pressure
Evap Inlet Temp
Evap Outlet Temp
Electronic EV
Compressor Speed
Supply Voltage
Compressor Current
Total Current
Discharge Gas temp 1
Discharge Gas temp 2
Suction Gas temp

Economizer Inlet temp
Economizer Outlet temp
Economizer MV
Discharge MV
Ambient temp
Rec Supply air temp
Rec Return air temp
Humidity
Battery Voltage
USDA 1 Temp
USDA 2 Temp
USDA 3 Temp
Cargo Temp
Ventilation Volume

*12 Configuration Set

Controller model Į Log Interval Optional Sensor J Reheat Coil Į Ventilation (FA) Į J **USDA Sensor Type** ここ Temp Unit Pressure Unit Ventilation Unit Container I.D. J Controller Date J Controller Time Į H006

<u>Circuit Breaker OFF</u> if configuration set is changed.

%13 Optional Function

Bulb Mode Function
Rail Mode Function
ASC Function
ACT Function

<u>Circuit Breaker OFF</u> if optional function set is changed.

%14 USB Menu

Data Download Software Upload

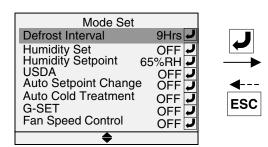
Controller model

¾4 Configuration Set Information

J

J

Log Interval
Optional Sensor
Reheat Coil
Ventilation (FA)
USDA Sensor Type
Temp Unit
Pressure Unit
Ventilation Unit
Container I.D.
Controller Date
Controller Time
H006


%5 Service Menu

Trip Chart
Trip Report
PTI History
Alarm Record
Auto Pumpdown
Monitoring Log.

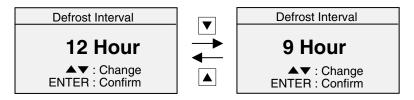
%1 Set Point temperature Change

1. Press ▼ ▲ key to change Set Point temperature. Press ✔ key to determine. Set Temp. Range: -30.0°C to +30.0°C.

%2 Mode Set

- **%2-1 Defrost Interval Set**
- **%2-2 Humidity Set**

When Reheat Coil is set to "OFF" in %12 Configuration Set, this function will not work.


- **%2-3 Humidity Set**
- **%2-4 USDA Set**
- ※2-5 Automatic set point change When ASC function is set to "OFF" in ※13 Optional Function, this function will not work.
- ※2-6 Automatic Cold Treatment Set (Option)
 When ACT function is set to "OFF" in ※13 Optional Function and USDA is "OFF" in ※2-4 USDA setting, this function will not work.
- **%2-7 G-SET Set**
- ※2-8 Fan Speed Control

%2-1 Defrost Interval Set

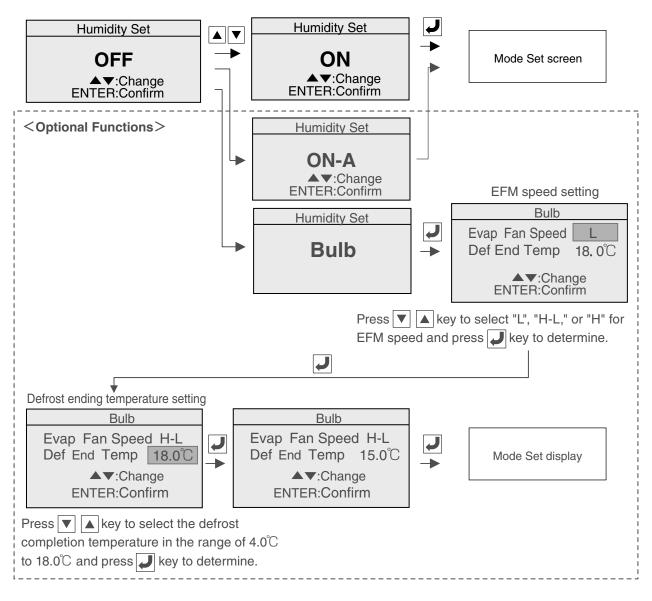
1. Press ▼ ▲ key to select defrost interval and press ✔ key to determine.

Time setting: 3, 6, 9, 12, 24 Hr

Auto setting: AUTO (Defrosting will executed automatically in accordance with the state of frost formation occurred on the evaporator coil.)

%2-2 Dehumidification Operation Set

1. Press ▼ ▲ key to select "ON", "ON-A", "Bulb" or "OFF" and press ✔ key to determine.

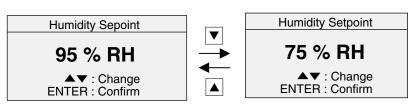

ON: Dehumidification operation is conducted. (For unit equipped with humidity sensor)

ON-A : Dehumidification operation is conducted. (For unit not equipped with humidity sensor)

Bulb: When dehumidifying (the Bulb mode is set to "ON" in %13 Optional Function)

OFF: When dehumidification operation is not conducted

Note: ON-A and Bulb are optional functions.



%2-3 Humidity Set

1. Press ▼ ▲ key to select Humidity Setting and press

key to determine.

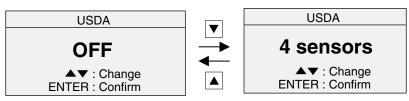
Humidity Setting : 50~95%RH

%2-4 USDA Set

1. Press ▼ ▲ key to select number of sensors and press ✔ key to determine.

4 sensors 3 4 USDA sensors connected

3 sensors 3 USDA sensors connected


AUTO : Automatically recognize the number

of USDA sensors connected (Note 1)

OFF : No USDA sensor connected

Note 1: To measure the temperature inside or cargo temperature for the purposes other than cold treatment transport, USDA sensor can record the temperature ranging from −30.0 °C to +40 °C.

Do not use it for cold transport treatment because it does not meet the USDA standards.

%2-5 ASC, Automatic set point change (Option)

This function can change the set temperature automatically over time (for details, refer to paragraph 1.5.1).

Step 1. Press ▼ or ▲ key to select "ON" or "OFF".

ON: To enable automatic set point change

OFF: To disable automatic set point change

Step 2. Select "ON" and press key to determine, then the previous setting screen appears (Fig. 1).

- 1) The temperature can be set up to 9 times.
- 2) Setting temperature range SP: -30.0 $^{\circ}$ C to +30.0 $^{\circ}$ C
- DHU setting: "ON" when a dehumidification operation is executed, "OFF" when a dehumidification operation is not executed.
- 4) Setting humidity range SHU: 50% to 95% RH when DHU setting is "OFF", "--" appears.
- 5) Range of operating time: Last, 1 to 999 Hr Select "Last" for the last operation so that it will be a continuous operation.

Step 3. ASC Setting Procedure: See the case example below.

No	SP℃	DHU	SHU (%)	Hr
1	15.0	ON	80	48
2	10.0	ON	75	72
3	0.0	OFF		240
4	10.0	ON	75	LAST

- 3-1. Set SP, DHU, SHU or Hr for the first settings in the following ways.
 - 1) Press 【▲ key to change setting to "15.0 °C ", the first SP, and press 【✔ key to determine. (Fig. 2)
 - 2) Press ▶ key to move next setting item, SHU, and press ✔ key, then press ✔ ▲ key to change setting to "80%", the first SHU, and press ✔ key to determine. (Fig. 3)
 - 3) Press ▶ key to move next setting item, Hr, and press ✔ key, then press ▼ ▲ key to change setting to "48", the first operating Hr, and press ✔ key to determine. (Fig. 3)
- 3-2. Similarly, set the second and the third settings for SP, DHU, SHU or Hr (Figs. 4 and 5).
- 3-3. To set the fourth setting, select "LAST" for operation time and press

 ✓ key (Fig. 6).
- 3-4. Press ▼ key to move to "START", and press ✔ key. The next screen (Fig.7) will be appeared. (Fig. 6 ⇒ Fig. 7)

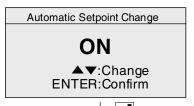


Fig. 1 (Previous setting screen)

	Auto Setpoint Change						
	No	SP ℃	DHU	SHU(%)	Hr		
Ī	1	21.0	ON	81	901		
	2	22.0	ON	82	902		
	3	23.0	ON	83	903		
	4	24.0	ON	84	904		
	5	25.0	ON	85	905		
	6	26.0	ON	86	906		
	7	27.0	ON	87	907		
	8	28.0	ON	88	908		
	9	29.0	ON	89 ST	ART 🗾		
	♦	♦ Sele	ct Er	nter :Chg	Set		

Fig	. 2		₽F	First time	
	Auto Setpoint Change				
	No	SP ℃	DHU	SHU(%)	Hr
	1	15.0	ON	81	901
	2	22.0	ON	82	902
	3	23.0	ON	83	903

Fig	. 3				
		Auto S	Setpoint	Change	
	No	SP ℃	DHU	SHU(%)	Hr
	1	15.0	ON	80	48
	2	22.0	ON	82	902
	3	23.0	ON	83	903

Fig. 4			\Box	Second	time
	Auto Setpoint			Change	
	No	SP ℃	DHU	SHU(%)	Hr
	1	15.0	ON	80	48
	2	10.0	ON	82	902
	3	23.0	ON	83	903

Fig	. 5		\Box	Third tim	e	
	Auto Setpoint Change					
	No	SP ℃	DHU	SHU(%)	Hr	
	1	15.0	ON	80	48	
	2	10.0	ON	75	72	
	3	0.0	OFF		240	

⁼ig	ig. 6 — Fourth time			ime	
	Auto Setpoint Change				
	No	SP ℃	DHU	SHU(%)	Hr
	1	15.0	ON	80	48
	2	10.0	ON	75	72
	3	0.0	OFF		240
	4	10.0	ON	75	LAST
	5				
	:				
	9			STAI	at J

Fig	.7
	Auto Setpoint Change
	Press Enter to Start ESC to Cancel

%2-6 ACT, Automatic Cold Treatment

When cold treatment is completed during USDA transport, this ACT function switches the temperature to the preset temperature automatically. (See paragraph 1.5.3 for the detail.)

Step 1. Press ▼ or ▲ key to select either "ON" or "OFF".

ON: To enable automatic change of setting temperature OFF: To disable automatic change of setting temperature

Step 2. When selecting "ON" and determining by pressing key, the previous setting screen appears (Fig. 1).

The following four settings are required.

- 1. USDA CT days (1 to 99 days)
- 2. USDA Max. Temperature (-4.9 to 30.0 $^{\circ}$ C)
- 3. USDA Setpoint SP (-4.9 to 30.0 °C)
- 4. Final-SP (-4.9 to 30.0 °C) after USDA CT

Step 3. ACT setting procedure: See the case example below.

: 10 days USDA Max. ∶ 1.0 °C Setpoint ∵0.0℃ Final-SP : 3.0℃

3-1. Set CT to 10 days.

Press ▼ | ▲ key to change the previous CT to "10" days, the first SP, and press | | key to determine. (Fig. 2)

- 3-2. Press ▶ key to move to next setting item USDA Max, then to "1.0" °C and press key to determine. (Fig. 3)
- 3-3. Similarly, set Setpoint to "0.0" $^{\circ}$ C and Final-SP to "3.0" $^{\circ}$ C. (Fig. 3)

Step 4. Finally, press | | key to start ACT operation. (Fig. 4)

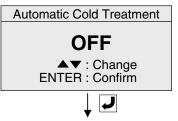
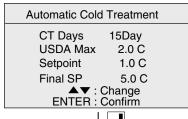
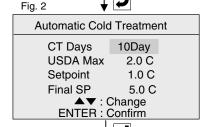
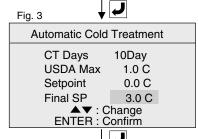
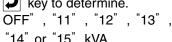
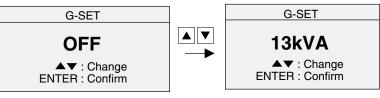





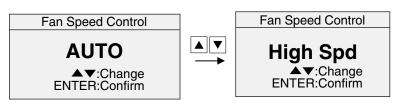
Fig. 1 Previous setting screen




%2-7 G-set set

It is able to select power consumption limit of the unit in order to continuous operation as much as possible when power supply is not enough capacity.

1. Press ▼ ▲ key to select total power consumption and press key to determine.

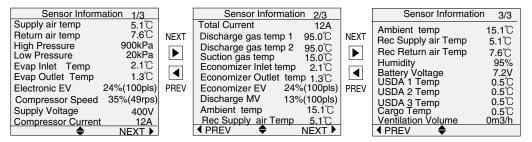

"14" or "15" kVA

When a G-set setting has been made, the total power consumption will take priority, so that refrigeration performance may be insufficient under some conditions.

%2-8 Fan Speed Control

or "ON", and press key to determine.

AUTO During chilled operation, the evaporator fan runs at high speed/low speed.


High Spd : During chilled operation, the evaporator fan runs at high speed.

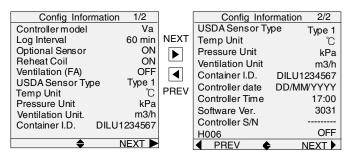
%3 Sensor Information

The current values in each sensor in the unit are displayed.

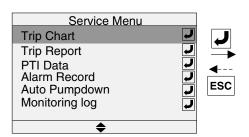
Press ▼ key for page change.
 Press ▼ key to scroll.

2. Press the Esc key for 1 second to return to the previous screen. (If you press the Esc key for 3 seconds, the display will return to the operation screen.)

Notes 1. "ERROR" is displayed in the case of sensor failure.


- 2. If Humidity Set is "OFF", Humidity "N/A" is displayed.
- 3. If USDA is set "OFF", USDA 1, 2, 3 or Cargo Temp "N/A" is displayed.
- 4. If USDA is set "AUTO", USDA 1, 2, 3 or Cargo Temp "N/A" is displayed even if USDA sensor is failed
- 5. If Ventilation (FA) is set "OFF", Ventilation Volume "N/A" is displayed.

%4 Configuration Set Information


This function confirms the settings configured in %12 Configuration Set.

Press ▼ key for page change.
 Press ▼ key to scroll.

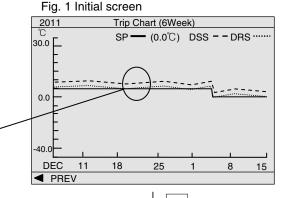
2. Press the ESC key for 1 second to return to the previous screen. (If you press the ESC key for 3 seconds, the display will return to the operation screen.)

%5 Service Menu

%5-1 Trip Chart

%5-2 Trip Report

%5-3 PTI History

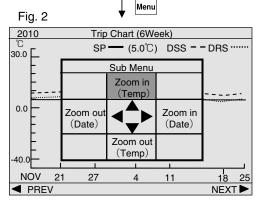

%5-4 Alarm Record

*5-6 Monitoring Log (Start, Stop)

%5-1 Trip Chart

Press ◀ key to scroll for the past data.

Zoom in example (See below.)

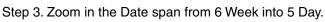

Zoom in/Zoom out function

Press MENU key, then Zoom in/Zoom out screen appears. (Fig.2)

<Horizontal axis: Number of days>

(Default) Zooming in or out from 42 days (6 weeks) to 10 days, 5 days, 2.5 days, 1 day or vice versa (by ▶ ◀ keys).

<Vertical axis: Temperature >
(Default) Zooming in or out from 75 $^{\circ}$ C (35 to -40 $^{\circ}$ C) to 30 $^{\circ}$ C, 20 $^{\circ}$ C, 10 $^{\circ}$ C, 4 $^{\circ}$ C or vice versa (by $\boxed{\blacktriangle}$ keys).

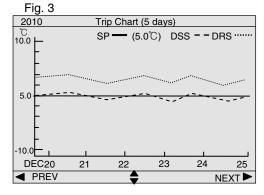


Zoom in or out for date Zoom in or out

Zoom in example

Fig. 3 shows an example of zooming in the circled area in the Fig. 1. (Date span: 5 Day, Temperature range: 20 $^{\circ}$ C) The procedure follows.

- Step 1. Scroll the span until the DEC25, the day before the circled portion, appears at the right end on the screen by pressing ◀ key.
- Step 2. Press MENU key to show the Zoom in/Zoom out screen.



Press key to zoom in the Day span from 6 Week into 10 Day and press key.

Press MENU key again to show the Zoom in/ Zoom out screen, then zoom in from 10 Day to 5

Day using key, then press key.

Step 4. Zoom in the temperature range from 35 to -40°C to 10°C . Similar to the Date span, press MENU, \blacktriangle , \biguplus key in the following order: 35 to 40 °C \Rightarrow 30 °C \Rightarrow 20 °C \Rightarrow 10 °C .

%5-2 Trip Report

The Trip report shows the trip data for up to 84 days (12 weeks) starting from the present.

The logging interval is the value that is selected in the configuration settings.

To be displayed as an event when an alarm occurs.

		Trip	Report			1/131
Time	SP(C)	DSS(C)	DRS(C)	SHU	J(%)	HU(%)
20 MAY,2	2009					
		0 -30.3				
_		0 –30.1		75		
19:	00 –30.	0 -30.1	-30.1	75	75	
18:	00 –30.	0 -30.6	-30.6	75	75	
19 MAY,2	2009					
21:	00 -30	.0 –30.3	-30.3	75	75	
20:34 F	5FF					
		.0 –30.1		75		
		.0 –31.1				
-		.0 –30.6				
17: 16:32 E		.0 –30.5	-30.0	75	75	
16:	00 -30	.0 -31.2	-31.8	75	77	
15:	00 -30	.0 -25.7	-26.3	75	79	
14:	00 -30	.0 –10.3	-11.0	75	79	
						NEXT 🕨

%5-3 PTI History

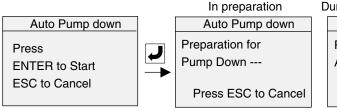
Shows up to five sets of the latest successful PTI History in the past.

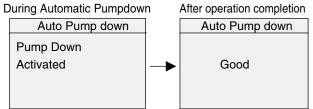
F	PTI History
Full PTI	15 JAN,2011 23:45
	3Hour Ago
Chilled PTI	21 DEC,2010 21:38
	25Day 5Hour Ago
Short PTI	21 DEC,2010 19:05
	25Day 8Hour Ago
Full PTI	15 NOV,2010 17:10
	31Day 10Hour Ago
Short PTI	21 AUG,2010 15:05
	120Day 8Hour Ago

%5-4 Alarm Record

Display the alarm generated at the present and in the past maximum 180 days.

Alarr	n Record			
20 MAY,2010	21:15	E425		
1 APR,2010	8:43	F701		
1 APR,2010	8:43	E425		
1 APR,2010	8:43	E5FF		
5 JAN,2009	14:58	E425		
USDA #1 sensor failure				
	\$	NEXT >		


% 5-5 Automatic Pumpdown

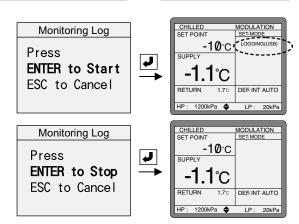

Step 1. Press wey to start Automatic Pumpdown.

"Preparation for ···" is displayed if it is started soon after I/O switch ON since start-up control is activated.

* "Pump Down Activated" is displayed during Automatic Pumpdown operation

Step 2. After the operation is completed, "GOOD" is displayed. Alarm E202 (Automatic pumpdown failure) is displayed when the automatic pumpdown is failed. Turn I/O switch OFF to complete pumpdown.

※ 5-6 Monitoring Log


This function stores data generated during operation such as temperature sensor values, pressure values and valve opening value onto USB memory.

By monitoring this data, it is possible to understand the status of the equipment more accurately.

Step 1. Insert USB memory. (CPU board)

Step 2. Press key to start Monitoring Log. During Monitoring Log, "LOGGING (USB)" is displayed on the operation screen.

Step 3. To complete the Monitoring Log, access to operation screen ⇒ Service menu ⇒ Monitoring Log and execute "Enter to Stop".

Caution !!

- 1. Remove the USB memory after confirming that the "LOGGING (USB)" display has turned off.

 If the USB memory is removed while monitoring log is still in progress, the data files may become corrupted.
- 2. The data files are saved at intervals of one per hour.
- 3. The file size of a single data file is approximately 400 KB.

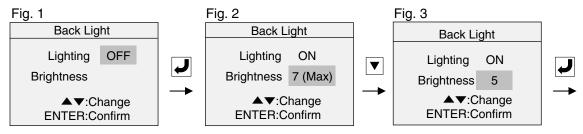
※6 Back Light Set (Adjustment of LCD screen brightness)

Selection of Back Light function

ON : Back light function available

AUTO: Back light function available. (The back light is turned off in the absence of key operation for 5

minutes.)


OFF : Back light off

1. Press ▼ ▲ keys to select "ON", "AUTO", or "OFF" and press ✔ key to determine (Fig. 1).

- *When selecting "ON" or "AUTO", the next screen, Brightness adjustment, is displayed (Fig. 2).

Brightness Adjustment

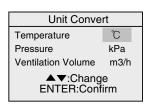
- 2. Adjust brightness by using ▼ ▲ keys and determine the selection by pressing ✔ key. (Fig. 3) Brightness: 1, 2, 3, 4, 5, 6, 7 (Max)
- 3. Returns to the Menu screen by using 🗾 key.

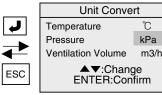
Note: The back light function will not be activated in the battery mode.

%7 Unit Alternate

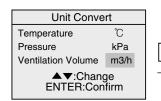
- 1. Temperature Alternate

 Press ▼ ▲ key to select

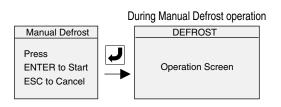

 "℃ " or "°F" and press ✔ to determine.
- 2. Pressure alternate

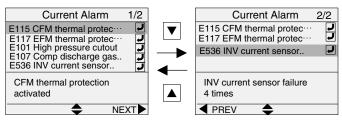

 Press ▼ ▲ key to select

 "kPa", "PSI" or "Bar" and

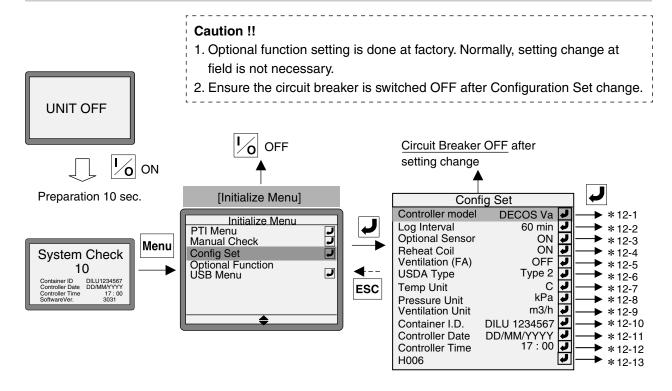

 press ✔ to determine.
- 3. Ventilation Volume Alternate
 Press ▼ ▲ key to select
 "m3/h" or "CFM" and press

 to determine.




%8 Manual Defrost

- 1. Press key to activate manual defrosting.
 - * "DEFROST" is displayed on the top of Operation display during Manual Defrost operation.



%9 Display Alarm

- Press ▼ ▲ keys to display current alarm.
 *When there are many current alarms, they will be displayed on more than one page.
 - *"No ALARM" is displayed when there is no current alarm.

%12 Configuration Set

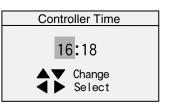
	Title display	Setting
%12-1 Controller model	Controller model	DECOS Va or V
※12-2 Log Interval	Log Interval	15, 30, 60, or 120 minutes
%12-3 Optional Sensor	Optional Sensor	ON : DRS sensor fitted OFF : DRS sensor not fitted
%12-4 Reheat Coil	Reheat Coil	ON : Reheat coil fitted OFF : DRS Reheat coil not fitted
※12-5 Ventilation (FA)	Ventilation (FA)	LOW-FLY: With FA sensor (Ventilator with insect screen) LOW: With FA sensor (Ventilator without insect screen) OFF: Without FA sensor (Standard)
%12-6 USDA Sensor Type	USDA Sensor Type	Type 1 : ST9702-1 type USDA sensor Type 2 : NTC type USDA sensor (Standard)
%12-7 Temp Unit	Temp Unit	$^{\circ}$ C (Centigrade) or $^{\circ}$ F (Fahrenheit)
※12-8 Pressure Unit	Pressure Unit	kPa , psi or bar
※12-9 Ventilation Unit	Ventilation Unit	m3/h or CFM
※12-10 Container I.D.	Container I.D.	
%12-11 Controller Date	Controller Date	Mentioned in following page.
%12-12 Controller Time	Controller Time	
		H006 function: Detect the time which temperature difference between SS and DSS becomes 2°C or over OFF: Without H006 function 1: Time which temperature difference becomes 2°C or over is more than 1 hour
※12-13 H006	H006	2: Time which temperature difference becomes 2°C or over is more than 1 hour 3: Time which temperature difference becomes 2°C or over is more than 3 hour 4: Time which temperature difference becomes 2°C or over is more than 4 hour 5: Time which temperature difference becomes 2°C or over is more than 5 hour 10: Time which temperature difference becomes 2°C or over is more than 10 hour


%12-10 Container I.D.

- Step 1. Press ▼ ▲ key to change the 1st letter.
- Step 3. Change the next letter and 7 numerals with same procedure. Press key to determine container I.D.

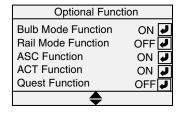
Container I.D. DILU 1234567 Change Select ENTER Confirm

%12-8 Controller Date


Step 1. Press ▼ ▲ key to change YEAR and press ✔ key to determine.
Step 2. Press ▼ ▲ key to change MONTH and press ✔ key to determine.
Step 3. Press ▼ ▲ key to change DAY and press J key to determine.

%12-9 Controller Time

Step 1. Press ▼ ▲ key to change TIME and press ✔ key to determine.


Step 2.Press ▼ ▲ key to change MINUTE and press ✔ key to determine.

%13 Optional Function Mode

Notice !!

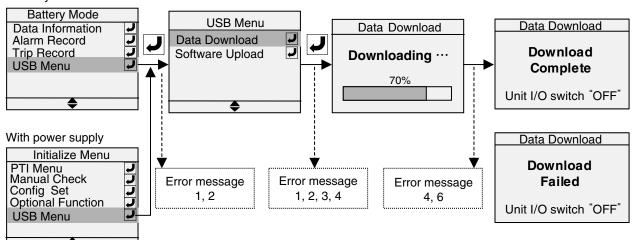
- 1. Optional function setting is done at factory. Normally, setting change at site is not necessary. (In some cases the function may not operate even after it has been set.)
- 2. Ensure the circuit breaker is switched OFF after Configuration Set change.

- *13-1 Bulb mode function ** 13-2 Rail mode function
- ※13-3 AST, Automatic change function of set temperature (for details, refer to paragraph 1.5.1)
- ※13-4 ACT, Automatic cold treatment function (for details, refer to paragraph 1.5.3)

%13-1 Bulb Mode Function

※13-2 Rail Mode Function

%13-3 ASC Function


%13-4 ACT Function

	Title display	Setting	$lacktriangle$ A Change \Rightarrow $lacktriangle$ Enter
	Bulb Mode Function	ON: With bulb	mode function
	Rail Mode Function	ON: With rail m	<u> </u>
_	ASC Function	ON: With ASC	function
	ACT Function	OFF: Without A	
	7.01 Tanolion	OFF: Without A	CT function

%14 USB Menu

%14-1 Data Download

Battery Mode

Error message 1

Data Download

No USB Memory
Found !!
Insert or
Press
ESC to Return

* USB Memory not inserted

Error message 2

Unsupported
USB Memory !!
Press
ESC to Return

* Unsupported USB Memory

Error message 3

Data Download

Wrong
USB

Press
ESC to Return

*The USB memory has no authentication file.

Error message 4

Data Download

USB Memory Full

Need more than

1MByte

Press

ESC to Return

* USB Memory insufficient capacity.1MB or more is required.

Error message 5

Data Download
Too many Files !!
Move Files to
Another Folder
Press
ESC to Return

*Too many files. For multiple download of same container ID on the same date, overwriting symbol A to Z.

Error message 6

Data Download

Download

Failed

Press

ESC to Return

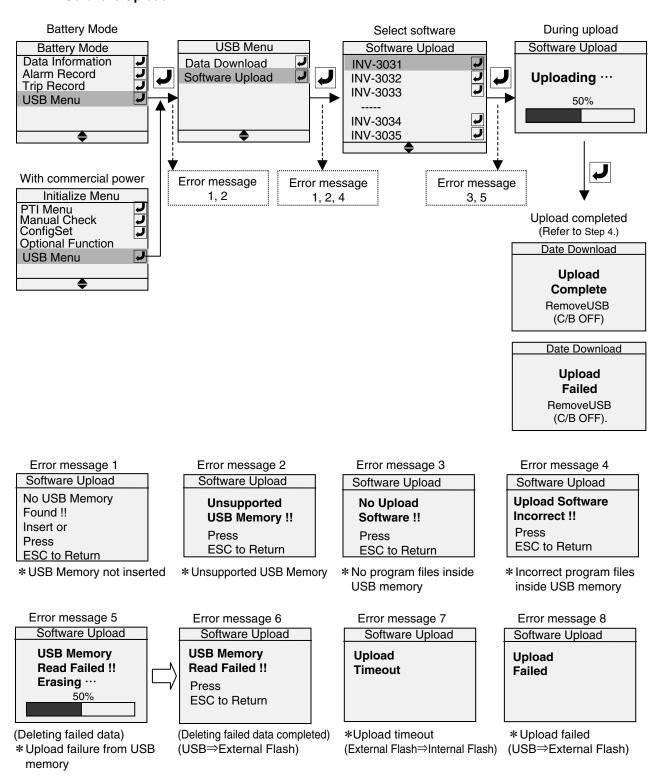
* Download failed

Step 1. Insert the USB memory that contains an authentication file. (%1)

Download the authentication file from the Daikin's web site.

Step 2. Press ▼ key to select "Data Download" in "USB Menu" and press ✔ key to determine.

Step 3. After completion of downloading,


Pull out a USB memory (in the battery mode).

Make Circuit Breaker to OFF or Unit I/O switch to OFF

(when a commercial power source is used).

(%1): Save the authentication file directly onto the USB memory.

%14-2 Software Upload

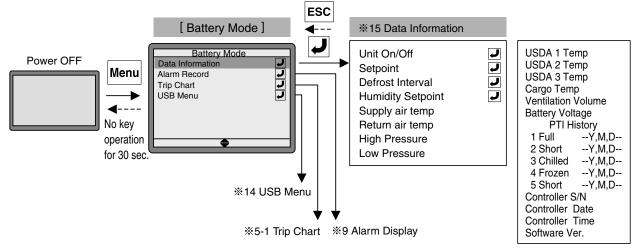
Step 1. Insert USB memory (CPU board)

Step 2. Press ▼ key to select "Software Upload" in "USB Menu" and press ✔ key to determine.

Step 3. Press ▼ key to select "Software" in "Software Upload" and press ✔ key to determine.

Step 4. After finishing uploading, Pull out a USB memory (in the battery mode).

Set the Circuit Breaker to "OFF" (when a commercial power source is used).


Note: After the USB memory has been inserted, it will take up to 30 seconds for the USB memory to be authenticated.

※15 Data Information (Battery Mode)

Data Information is available in battery mode when no power is supplied.

Furthermore, the following four items can be set :

1. Unit ON/OFF OFF⇔ON 2. Temperature Setpoint 3. Defrost Interval Set 4. Humidity Setpoint

2.4 Wake-up Battery (Rechargeable Battery)

If power supply is not available, the above battery mode will supply power from the wake-up battery (rechargeable type) which is installed at CPU board. Battery life is approximately 2 years. The remaining voltage at normal time can be checked by battery mode or during operation (*3 Sensor Information in paragraph 2.3). The guide is as follows.

The survival voltage

DC7.6V or more: The battery has been charged. DC7.5V or less: Recharge battery.

To recharge, power the unit for 14 hours or more. When power is being supplied, recharging will be carried out while the unit is operating and while it is stopped (CB on).

The survival voltage after completion of recharging DC7.6V or more: The battery has been charged. DC7.5V or less: The battery may have

deteriorated. It is recommendable to replace the battery.

DC7.1V or less: The battery has deteriorated.

The battery must be replaced.

Caution !!

In the event of using the battery for 2 years or more, USDA data logging etc., may not be executed even if LCD screen indicates that the survival voltage is more than DC7.6V or more.

Replacement of battery

Battery is fixed on CPU
board. (Refer to the right fig.)

X2A

Step 1. Disconnect the
connecting cable
to CPU board from
connector. (X2A)

Step 2. Remove the mounting bolts of the battery cover.

Step 3. Remove the Velcro tape and dismount the battery together with lead wire.

Notice !!

This battery is NiCd battery.

 Please send the used battery to our certified stores or satellite parts center.
 Please send the battery replaced in EU member nation to the following address.

> DAIKIN REFRIGERATION OFFICE Fascinatio Boulevard 562, Cappele A/D Ijssel 2909 VA, The Netherlands Tel. +31-(0)10-286-2090 Fax. +31-(0)10-286-2099

2.5 Alarm Code

●Alarm grouping F---: Alarm that unit stop

E---: Alarm that unit restart or backup operation
T---: Alarm during PTI (Refer to paragraph 3.3.2.)
F5---: Alarm that unit stop related to inverter
E5---: Alarm that unit restart related to inverter

Communication Interrupted: Communication error between CPU board (EC1) and

operation board (EC3)

Alarm	Controller action at the generating of alarm
F	Critical shut down.
Г	(Requires inspection/repair)
	The unit stops, but restarts 3 minutes after the condition returns to normal.
E	If the same error occurs multiple times, the unit will switch to standby for 4 hours or stop.
⊑	Unit continues operation by back-up operation.
	Alarm display only. Unit continues operation.

Alarm LED and Alarm Code Display

Alarm	Alarm LED (Red)	Alarm code display
F Alarm, E807, E304	Blinking	Press ▲ or ▼ key to display alarm code.
E Alarm	OFF	

●F Alarm

Diagnosis	Alarm	Alarm content	Controller action
Diagnooio	code	/ warm content	Controller delier
001	F101	HPS activates within 30 seconds after compressor starts.	UNIT stops
		(2400 kPa or more)	
002	F109	LPT drops below -72kPa within 2 seconds after compressor starts	UNIT stops
003	F301	Temperature setting request	UNIT stops
004	F401	SS, DSS, RS and DRS all failed in chilled mode	UNIT stops
004	F405	HPT, DCHS1 and DCHS2 all failed	UNIT stops
004	F407	HPT and LPT both failed	UNIT stops
004	F409	LPT, DCHS1 and DCHS2 all failed	UNIT stops
005	F701	Abnormal power supply voltage detected within 2 seconds after	UNIT stops
		unit turns on	
		One of R, S or T phase is open after unit turns on	
006	F703	Unbalance power supply	UNIT stops
007	F705	Open power phase during operation	UNIT stops
800	F707	Fuse F2U is open (I/O board)	UNIT stops
009	F809	E809 (shortage of refrigerant) is generated twice	UNIT stops

●E Alarm

Diagnosis	Alarm	Alarm content	Controller action
001	code E101	UDC activates during eneration	Doctort offer 2 min
101	E101 E105	HPS activates during operation Compressor operating current is too high (over DC 51A)	Restart after 3 min. Restart after 3 min.
002	E105 E107	DCHS1 or DCHS2 becomes 130 °C or more for 10 minutes or 145	Restart after 3 min.
002	E107	C or more.	nestart after 5 min.
002	E109	LPT drops below -70kPa during operation	Restart after 3 min.
010	E115	Condenser fan motor internal thermostat activated	Restart after 3 min.
011	E201	Pumpdown control is not completed within rated time	Alarm display only
012	E202	Automatic pumpdown failure	Alarm display only
013	E203	Overcooling prevention	Restart after 3 min.
014	E207	Defrost is not completed in 90 min.	Alarm display only
003	E303	Humidity setting request (during dehumidification operation)	Alarm display only
015	E304	Incorrect configuration set (Reheat coil)	Alarm display only
003	E305	Defrost interval setting request	Alarm display only
003	E307	Calendar setting request	Alarm display only
003	E311	Trip start setting request	Alarm display only
016	E401	Supply air temperature sensor (SS) failure	Backup operation
016	E402	Data recorder supply air temperature sensor (DSS) failure	Backup operation
016	E403	Return air temperature sensor (RS) failure	Backup operation
016	E404	Data recorder return air temperature sensor (DRS) failure	Backup operation
017	E405	Discharge gas temperature sensor (DCHS1) failure	Backup operation
018	E406	Suction gas temperature sensor (SGS) failure	Backup operation
018	E407	Evaporator inlet temperature sensor (EIS) failure	Backup operation
018	E409	Evaporator outlet temperature sensor (EOS) failure	Backup operation
018	E411	Ambient temperature sensor (AMBS) failure	Alarm display only
019	E413	Low pressure transducer (LPT) failure	Backup operation
019	E415	High pressure transducer (HPT) failure	Backup operation
020	E417	Power voltage sensor (PT) failure	Alarm display only
021	E419	Current sensor (CT) failure	Alarm display only
022	E425	USDA #1 sensor failure	Alarm display only
022	E427	USDA #2 sensor failure	Alarm display only
022	E429	USDA #3 sensor failure	Alarm display only
023	E431	Humidity sensor (HuS) failure	Alarm display only
022	E433	Cargo temperature sensor (CTS) failure	Alarm display only
018	E435	Economizer inlet temperature sensor (ECO IN) failure	Backup operation
018	E437	Economizer outlet temperature sensor (ECO OUT) failure	Backup operation
017	E439	Discharge gas temperature sensor (DCHS2) failure	Backup operation
024	E607	Sheet key failure	Alarm display only
005	E701	Abnormal power voltage is detected during operation.	Restart after 3 min.
005	E-70-	One of R, S or T phase is open during operation	Destant the C. I
025	E707	Temporary power supply shut down during operation	Restart after 3 min.
026	E801	CPU onboard battery failure	Alarm display only
027	E805	FA sensor failure	Alarm display only
028	E807	Ventilator open warning: Ventilator is open during frozen operation	Alarm display only
009	E809	Refrigerant shortage	Restart after 3 min.
029	E903	A communication error between CPU board (EC1) and operation	Alarm display only
		board (EC3)	

●Inverter F Alarm

Diagnocic	Alarm	Alarm content	Controller action
Diagnosis	code	Alaini content	Controller action
101	F528	E528 (Compressor does not startup) is generated 5 times.	UNIT stops
102	F52E	E52E (Temporary compressor overcurrent) is generated 4 times.	UNIT stops
102	F52F	E52F (Compressor current sensor failure) is generated 4 times.	UNIT stops
103	F536	E536 (Current sensor offset error) is generated 4 times.	UNIT stops
103	F538	Inverter board failure (Microcomputer I/O port logic judgment	UNIT stops
		failure when unit is on)	
104	F53A	Incorrect setting (Controller model)	UNIT stops
102	F53B	Inverter board failure (EEPROM fault when unit is on)	UNIT stops
103	F53C	E53C (Main circuit condenser recharging error) is generated 4 times.	UNIT stops
101	F53D	E53D (Compressor lock) is generated 4 times.	UNIT stops

●Inverter E Alarm

Diagnosis	Alarm code	Alarm content	Controller action
101	E523	Compressor over current (>16.1A) is detected during operation.	Restart after 3 min.
		, , , , , , , , , , , , , , , , , , , ,	
101	E524	Compressor over current (>19A) is detected during operation.	Restart after 3 min.
101	E525	Actual frequency much lower than command frequency due to	Restart after 3 min.
		compressor over load	
105	E526	Actual frequency much higher than command frequency due to	Restart after 3 min.
		external factors	
101	E528	Compressor does not operate after startup.	Restart after 3 min.
106	E52C	Inverter board temperature higher than 99 °C	Restart after 3 min.
102	E52D	Inverter board temperature abnormal (> 150 $^{\circ}$ C or < -45 $^{\circ}$ C is	Restart after 3 min.
		detected.)	
102	E52E	Current is too high temporary during startup (over 51A)	Restart after 3 min.
102	E52F	Compressor current sensor failure at startup	Restart after 3 min.
107	E531	Power supply voltage is unbalance	Restart after 3 min.
108	E532	Power supply voltage error (too high, too low at abnormally)	Restart after 3 min.
109	E533	Power supply voltage error (open phase)	Restart after 3 min.
103	E536	Current sensor offset fault when compressor starts	Restart after 3 min.
103	E53C	Main circuit charge failure when compressor starts	Restart after 3 min.
101	E53D	Compressor lock when compressor starts	Restart after 3 min.
110	E542	Cooling fan lock during operation (LX10F15A only)	Alarm display only
111	E5FF	A communication error between CPU board (EC1) and Inverter	Restart after 3 min.
		board (EC8)	

2.6 Alarm Diagnosis

001	F101 · E101	
Alarm Generating Logic	F101 HPS activates within 30 seconds after compressor so ON ≤ 1900kPa) E101 HPS activates during operation. (OFF≥2400kPa、C	
Possible Causes	*HPS or HPS circuit including connector X6 (inverter boad *Condenser air restriction / Short circuiting / CFM reverse over 50 degree C *DMV failure (Coil failure, Valve not opening, valve cloggi *Discharge line of compressor is restrictedCheck valve *Mixing of non-condensable gas (water, air, etc.) *Refrigerant overcharging *Controller (CPU board) or inverter board failure	e rotation / Ambient temperature is ng)
Trouble Shooting	Stpe 1. Check value of HPS activating while watching to HPT value on the LCD screen.	If HPS activates at lower than HPT2400kPa, replace HPS.
	Stpe 2. Check for blocking or short circuiting of air passage on air cooled condenser, CFM reverse rotation or stopped.	Repair as needed.
	 Stpe 3. DMV check 3.1 Disconnect the connector X11A (CPU board), then check resistance of DMV coil. 3.2 Touch on coil vibration corresponding to opening change when calibrating DMV at startup. (Refer to Calibration valves in paragraph 1.4.6.) 3.3 Fully open valve using emergency magnet. (Refer to paragraph 4.9.4.) Then operate the unit without coil. 	 3.1 Resistance of each coil: 46±3Ω 3.2 In case that the coil does not vibrate corresponding to opening change, check the coil or the controller. 3.3 If alarm is repeated, the valve body will not operate. Replace DMV body
	Step 4. Check compressor discharge line Check for clogging of check valve, strainer (front of check valve)	If there is abnormality, recover refrigerant and charge the specified amount of refrigerant.
	Stpe 5. Check for non condensable gas Refer to paragraph 4.4	
	Stpe 6. Refrigerant overcharging	
Controller Action	<u> </u>	
, 1011011	E101 Restart after 3 minutes	

002	F109 · E107 · E109	
Alarm Logic	F109 LPT drops below -72 kPa within 2 seconds after com 9 times E109 LPT drops below -70 kPa for 2 seconds during opera E107 DCHS1or DCHS2 becomes 135℃ or more for 10 mi	ation.
	LSV failure EEV failure (Coil failure, valve not opening, valve cloggir Liquid lineClogging of filter, strainer or dryer. Refrigerant shortage LPT failure	ng)
Trouble Shooting	Step 1. LSV check 1.1 Check LSV coil resistance 1.2 Energize LSV coil and listen the sliding sound ("CLICK") of valve body after selected LSV ON/OFF check (Refer to ※9 in paragraph 4.1 Manual Check.)	 1.1 Coil resistance within 15.2±1.5Ω 1.2 If there is no sliding sound ("CLICK") of valve body, replace LSV body.
	Step 2. EEV check 2.1 Disconnect the connector X9A (CPU board), then check the resistance of EEV coil. 2.2 Touch on EEV coil vibration corresponding to opening change when calibrating EEV at startup. (Refer to paragraph 1.4.6 for calibration valves.) 2.3 Fully open the valve body using emergency magnet. (Refer to paragraph 4.9.2.) Then operate the unit without coil.	 2.1 Resistance between each coil: 46±3Ω 2.2 In case that the coil does not vibrate corresponding to opening change, check the coil or the controller. 2.3 If the alarm is repeated, replace EEV body.
	Step 3. Liquid line check Check if there is a clogging in filter (front of LSV), dryer, strainer (front of EEV). If there is a clogging, the outlet side temperature of dryer, filter or strainer is low.	3. If there is a clogging, repair as needed. Then, charge specified amount of refrigerant.
	Step 4. Check for refrigerant shortage and/or gas leak Charge refrigerant R134a 0.5kg additionally two times. Then, check if the low pressure changes (increases) during operation.	4. It is refrigerant shortage if there is change of low pressure increasing. Stop refrigerant additional charging and recover refrigerant in system. Check refrigerant leakages and then charge specified amount of refrigerant.
	Step 5. Check LPT. (Refer to diagnosis No. 019 .)	
	F109 Unit stop	
Action	E107 · E109 Restart after 3 minutes	

003	F301 · E303 · E305 · E307 · E311
Alarm Logic and	After both CPU board (EC1) and operation board (EC3) are replaced together, the initial setup is not executed. E307, E311 After CPU board (EC1) is replaced, the configuration set is not executed.
Possible Causes	③ E307, E311No power supply to S-RAM (CPU board) during power off due to CPU onboard battery (CPU board) failure. (E801 is also generated.)
Trouble Shooting	 ①, ② Set configuration setting 〈F301 Temperature setting request〉 Set temperature, following * 1 Set Point Change in paragraph 2.3 (Set Point temperature Change). 〈E303 Humidity setting request〉 Set humidity, following * 2-3 Humidity Setpoint in paragraph 2.3. 〈E305 Defrost Interval setting request〉 Set defrost interval, following * 2-1 Defrost Interval in paragraph 2.3. 〈E307 Calendar setting request〉 Set * 12-11 Controller date (year/month/day) and * 12-12 Controller time (time), referring * 12 Configuration Set in paragraph 2.3. 〈E311 Trip start setting requirement〉 Set *20 Trip Start Time to "0" (press ENTER key for three seconds.), referring Manual Check in paragraph 4.1.
	 ③ ⟨Permanent measures⟩ ○ If E801 is also generated, replace CPU board. ⟨Emergency measures⟩ ○The unit will operate, However, controller time starts from incorrect time whenever power OFF/ON. therefore, trip data may not shown correctly.
Controller	F301 Unit stop
Action	E303 Alarm display only. E305 Alarm display only. E307 Alarm display only. E311 Alarm display only.

004	F401 · F405 · F407 · F409
Alarm Logic and Possible Causes	F401 SS, DSS, RS and DRS all failed during chilled mode, or X16A (CPU board) is disconnected. F405 Multiple sensor (HPT,DCHS1,DCHS2) all failure. F407 Multiple sensor (HPT,LPT) all failure. F409 Multiple sensor (LPT,DCHS1,DCHS2) all failure.
Trouble Shooting	The unit cannot perform backup operation and cannot be controlled. Replace each failed sensor. Refer to 016, 017, and 019.
Controller Action	F401, F405, F407, F409 Unit stop

005	F701 · E701	
Alarm Logic	F701 ①Abnormal power voltage is detected within 2 seconds with AC300V) ②One of R, S or T phase is open when the unit starts (F70 open.) E701 ③Abnormal power voltage is detected during operation. (全4)One of R, S or T phase is open during operation (F705 it open.)	05 is also generated when S phase is ≧AC565V or ≦AC329V)
Possible Causes	Power supply voltage is at high voltage (≧AC565V) or low voltage (≦AC329V). One of R,S,T phase is open	
Trouble Shooting		
	 ②、④ Check R,S,T phase is open 2.1 Check if there is open phase on the primary side (Power side) of circuit breaker 2.2 Check if there is broken wire (open) on the secondary side of circuit breaker *Between CB~X63A (PT/CT board) 	2.1 Repair or replace if there is a problem in power plug or cable Provide specified power supply if there is open phase in power supply 2.2 Repair as needed.
Controller	F701 Unit stop	,
Action	E701 Restart after 3 minutes	

006	F703
Alarm Logic	The waveform of power supply is abnormal, therefore phase is not detected correctly.
Possible Causes	Abnormal waveform of power supply
Trouble Shooting	Check power supply equipment or facility and provide power supply with correct phase wave form
Controller Action	F703 Unit stop

007	F705	
Alarm Logic	One of R, S, T phase is open (F701 is also generated when S phase is open.)	
Possible Causes	 Abnormal power supply (Open phase) Broken wire (open) at power plug or power cable Wire disconnection at unit 	
Trouble Shooting	Check if there is open phase on power from power supply equipment side	Provide correct power supply if there is power phase is open
	Check if there is Broken wire (open) at power plug or power cable (the primary side of circuit breaker)	Repair if there is a problem at power plug or cable
	3. Check if there is broken wire (open) at the secondary side of circuit breaker * Between C/B~X63A (PT/CT board)	3. Repair as needed
Controller Action	F705 Unit stop	

800	F707
Alarm Logic	*Fuse F2U (I/O board) is open. (E115 is also appeared when F707 is generated)
Possible Causes	*Coil of magnet contactor or solenoid valve is burned-out. Short circuited or grounded. *Ciruit line for below device is short circuit.
Trouble Shooting	1. Replace Fuse F2U after check following circuit. Magnet contactor ∶ PCC1,PCC2, CFH,CFL,EFH,EFL Solenoid valve ∶ HSV,RSV,LSV,ESV Built in thermostat in CFM ∶ Q1M <coil resistance=""> * Solenoid valve ∶ 15.2±1.5Ω (20℃)</coil>
Controller Action	F707 Unit stop

009	F809 · E809	
Alarm Logic	F809 E809 is generated twice (Refrigerant shortage) E809 Refrigerant shortage Chilled mode <full cool=""> EEV Opening≧400 pls, and RS is not drop 0.2°C for 1 hour <modulation> EEV Opening≧400 pls continuously for 5 minutes Frozen <rs≥0°c> EEV Opening≧400 pls, and RS is not drop 0.2°C for 1 hour <rs<0°c> EEV Opening≧400 pls continuously for 5 minutes</rs<0°c></rs≥0°c></modulation></full>	
Possible Causes	* Shortage of refrigerant * Liquid line (dryer) is clogging * EEV failure The causes of 009 seems to be the same as 002 and 011 . Among them, it may be insufficient refrigerant.	,
Trouble Shooting	Step 1. LSV check Step 2. Liquid line check and dryer blockage check Refer to 002 for the troubleshooting.	
	Step 3. EEV check Step 4. Check refrigerant shortage If there is no problem in above items, it seems to be refrigerant shortage. Conduct refrigerant recovery and charge specified amount of refrigerant after checking location of refrigerant leakages.	,
Controller Action	E809 Unit stop E809 Restart after 3 minutes	

010	E115
Alarm Logic	*Condenser fan motor internal thermostat activated (OFF≧135°C±5°C) (When F707(Fuse F2U is open) is generated, E115 is also appeared)
Possible Causes	*Condenser fan motor lock *Short circuit on the motor coil
Trouble Shooting	1. Whether condenser fan motor generates heat? Whether motor shaft rotates smoothly by hand? Check whether it's locked. 2. Check whether motor coil resistance is normal. High speed 30.6 $\Omega \pm 5\%$ (20°C) / Low speed 21.6 $\Omega \pm 5\%$ (20°C)
Controller Action	E115 Restart after 3 minutes

011	E201
Alarm Logic	E201 Pumpdown is not completed in fixed time ⟨Pump down before defrost (EEV close)⟩ LPT<-40kPa or EOS-LP(T)>30°C not reached less than 3 times within 300 seconds. ⟨Auto pump down (LSV close)⟩ Does not drop to LPT<-27kP within 210 seconds.
Possible Causes	EEV failure (Valve cannot close or clogged) in case of pump down before defrost LSV failure (Valve cannot close or clogged) in case of auto pump-down EEV failure Compressor failure
Trouble Shooting	Step 1. Check EEV or LSV (Refer to Diagnosis 002 .) Step 2. In case that EEV or LSV is normal. 2-1. Check LPT. (Refer to diagnosis No. 019) Carry out automatic pumpdown and compare with gauge pressure. 2-2. If the Low pressure is not reached to completed pressure, the compressor may abnormal condition.
Controller Action	E201 Alarm display only

012	E202
Alarm Logic	Automatic pumpdown failure HPT≧2300kPa or DCHS1 or DCHS2≧120°C during automatic pump-down.
Possible Causes	Refrigerant overcharged
Trouble Shooting	Recover refrigerant and charge with specified amount of refrigerant shown on unit name plate.
Controller Action	E202 Alarm display only

013	E203
Alarm Logic	SS≦SP-3.0℃ & 5 minutes elapsed during modulated control in chilled mode. (Over cooling prevention)
Possible Causes	Cooling load changes rapidly. (Small heat load)
Trouble Shooting	Check for the cause of sudden reduction of the heat load. * Example 1: Set the ventilation outlet from OPEN to CLOSE. * Example 2: The door is opened at the low ambient temperature (<sp).< td=""></sp).<>
Controller Action	E203 Restart after 3 minutes

014	E207				
Alarm Logic	Defrost can not be completed within 90 minutes. (The condition EOS≧10°C was not satisfied five defrosting times continuously during 90 minute counting).				
Possible Causes	Excessive frost on the evaporator coil. Setting time of defrosting interval is too long.				
Trouble Shooting	 Remove rest frost by manual defrost. Also, check whether defrost completion condition (EOS≥25°C & RS ≥15°C) are reached within 90 minutes on the LCD screen (*3 Sensor Information in paragraph 2.3). * In case of defrost is completed by above complete condition, consider as normal. Monitor unit operation. * In case of defrost does not complete due to not reach to complete condition, there may be low hot-gas temperature, insufficient hot-gas circulation. 				
Controller Action	E207 Alarm display only				

015	E304			
Alarm Logic	Incorrect configuration set (Reheat coil)			
Possible Causes	Dehumidification operation is selected when reheat coil is set to "OFF" in Configuration Set.			
Trouble Shooting	Change the Reheat Coil setting from "OFF" to "ON" on the configuration setting (*12 Configuration Set in paragraph 2.3).			
Controller Action	E304 Alarm display only (Alarm LED is blinking.)			

016	E401 (SS) • E402 (DSS) • E403 (RS) • E404 (DRS)			
Alarm Logic	Above sensor \leq -40°C (54k Ω) with 3 minute elapse or \geq 100°C (0.22 k Ω) with 3 minute elapse Note: The alarm is activated when sensor or the circuit is disconnected (open) or short-circuited.			
Possible Causes	*Open contact of connector X16A (CPU board) *Temperature sensor failure *Controller (CPU board) failure			
Trouble	Step 1. Check connector X16A and make sure it is properly installed.			
Shooting	Step 2. Disconnect X16A, and check the resistance of sensor X16A 9 7			
Controller Action	Chilled mode> When E401 (SS failure), Backup by DSS When E401 (SS failure) and E402 (DSS failure), Backup by RS=SP+2°C When E401 (SS failure), E402 (DSS failure) and E403 (RS failure), Backup by DRS=SP+2°C Frozen mode> When E403 (RS failure), Backup by DRS When E403 (RS failure) and E404 (DRS failure), Backup by SS=SP-5°C When E403 (RS failure), E404 (DRS failure) and E401 (SS failure), Backup by DSS=SP-5°C When All sensors are failure (RS, DRS, SS, DSS), the unit will operate as Full cool continuously			

017	E405 (DCHS1) • E439 (DCHS2)			
Alarm Logic	 DCHS1, 2≦-33°C (687 kΩ) & 1 minute elapsed. DCHS2≦AMBS & compressor speed is 53 rps or more DCHS1, 2≧187°C (1320 kΩ) & 3 minutes elapsed. Note 1: If the outside air temperature is -15°C or lower, no judgment is made during startup control. 2: The alarm is activated when sensor or the circuit is disconnected (open) or short-circuited. 			
Possible Causes	* Faulty contact of connector X16A, X20A (CPU board) * Temperature sensor failure * Controller (CPU board) failure			
Trouble Shooting	Step 1. Check connector X16A / X20A and make sure it is properly installed. Step 2. Disconnect X16 and X20A and check the sensor resistance value measurement (Connector X20A) * Contact to the connector pins correctly. * Contact to the connector pins correctly. * DCHS1 * Total Connector X20A (Contact to the connector pins correctly. * Total Connector X20A (Contact to the connector pins correctly. * Contact to the connector pins correctly. * Step 3. Check that DCHS2 is correctly installed on the compressor. Step 4. Check the controller (CPU board).			
	When E405 (DCHS1 failure), Backup by DCHS2 When E439 (DCHS2 failure), Backup by DCHS1			

018	E406 (SGS) • E407 (EIS) • E409 (EGE E411 (AMBS) • E435 (ECO IN) • E43						
Alarm Logic	Above sensor \leq -57°C (100 k Ω) with 3 minute elapse or \geq 100°C (0.221 k Ω) with 3 minute elapse Note: The alarm is activated when sensor or the circuit is disc	,					
Possible Causes	*Faulty contact of connector X16A and X20A (CPU board) *Temperature sensor failure *Controller failure	* Temperature sensor failure					
Trouble Shooting	then check the resistance of sensor mo	cample of sensor resistance value easurement (Connector X16A) Contact to the connector pins correctly.					
Controller Action	When E406 (SGS failure), Backup by EOS When E407 (EIS failure), Backup by LPT When E409 (EOS failure), Backup by SGS When E411 (AMBS failure), Alarm display only When E435 (ECO IN failure), Backup with economizer system	•					

019	E413 (LPT) • E415 (HPT)				
Alarm Logic	⟨E413⟩ LPT≦-110 kPa with 3 minutes elapse or ≧1420 kPa with 3 minutes elapse ⟨E415⟩ HPT≦-340 kPa with 3 minutes elapse or ≧4260 kPa with 3 minutes elapse				
Possible Causes	Faulty contact Pressure trans Controller failu	sducer fail		(CPU board)	
Trouble	Step 1. Check co	onnector >	(7A and n	nake sure it is properly installed.	
Shooting	Step 2-1. Connect manifold gauges and compare the value of pressure gauge and HPT value in LCD display. Replace HPT if the difference is greater than 50 kPa. Step 2-2. Connect manifold gauges and compare the value of pressure gauge and LPT value in LCD display. Replace LPT if the difference is greater than 10 kPa. Step 3. Turn on the circuit breaker and check if there is DC5V input from the controller. Black – Red : Input voltage DC5V (Connector X7A) Black – White : Output voltage LPT (Connector X7A) Black – White : Output voltage LPT (Connector X7A)				
	Sensor name	Pin (Connec	No. tor X7A)	Voltage value	
	HPT	1	3	DC 5V	
		2	3	Refer to "5.3 Pressure Sensor Characteristics"	
	LPT	<u>4</u> 5	6	DC 5V Refer to "5.3 Pressure Sensor Characteristics"	
	If input DC 5V is	not prese	nt, check		
Controller Action	E413 Backup operation E415 Backup operation				

000	E417				
020	E417				
Alarm Logic	Power voltage sensor PT failure				
Possible Causes	I. Open circuit between connector X61A (PT/CT board)~ X4A (CPU board) 2. Fuse F11U is open (on PT/CT board) 3. Voltage sensor PT failure (on PT/CT board)				
Trouble Shooting	Step 1. Check connector X61A (PT/CT board) and X4A (CPU board). Make sure it is properly installed				
	Step 2. Check if there is short circuit in secondary side of fuse F11U (ZNR, primary side of Tr).				
	F11U X62A Tr X63A ZNR Surge absorber PT/CT board				
	Tr X63A ZNR				
	If shorted, replace the PT/CT board.				
	Step 3. If repeat the alarm with no short circuit, replace the PT/CT board.				
Controller Action	E417 Alarm display only				

021	E419
Alarm Logic	Current sensor CT failure
Possible Causes	*Open circuit between connector X61A (PT/CT board)~ X4A (CPU board) *Current sensor CT failure (in PT/CT board)
Trouble Shooting	Step 1. Check connector X61A(PT/CT board) / X4A(CPU board) and make sure it is properly installed.
	Step 2. Replace PT/CT board.
Controller Action	E419 Alarm display only

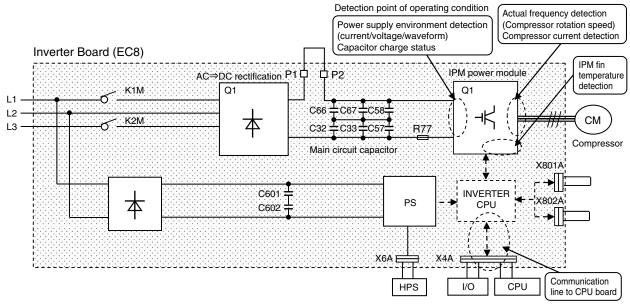
022	E425 (USDA1) • E427 (USDA2) E429 (USDA3) • E433 (CTS)
Alarm Logic	When USDA sensor type "2" is set on $\%$ 12 Configuration set in paragraph 2.3 $ \le -39^{\circ}\mathbb{C} \ (320 \text{k}\Omega) $ USDA sensor / CTS or $ \ge 96^{\circ}\mathbb{C} \ (0.79 \text{k}\Omega) $ Note: The alarm is activated when sensor or the circuit is disconnected (open) or short-circuited.
Possible Causes	Incorrect setting (Setting number of USDA sensor is not match) Device malfunction Connector disconnected / open wire / short circuit / USDA receptacle failure USDA sensor failure * Controller failure
Trouble Shooting	Step 1. If USDA is set to "3" or "4" in *2 mode setting of paragraph 2.3, check whether all of three or four sensors are connected.
	Step 2. Check whether cable or receptacle between X6A and USDA receptacle is open or short-circuited. After make jumper between pins A—B on USDA/CTS receptacle, check the continuity on socket X6A (CPU board). Continuity check (Connector X6A) USDA1 USDA2 (CPU board) (Inside container) Repair or replace if there is disconnection or short circuit. Step 3. Check the resistance value for each sensor of USDA and CTS sensor USDA1 USDA2 USDA3 USDA3 USDA3 USDA3 USDA3 USDA3 CTS Replace sensor, if does not matches the resistance and USDA sensor characteristic table.
	Caution: Regarding USDA sensor, type "1" and "2" have different characteristics. Identify the type by referring *4 Configuration Information in paragraph 2.3 (configuration setting information). Step 4. If the sensor is normal, replace the controller.
Controller Action	E425 Alarm display only E427 Alarm display only E429 Alarm display only E433 Alarm display only

023	E431				
Alarm Logic	Humidity sensor	Humidity sensor (HuS) failure (Detect RH>120% or RH<20%)			
Possible Causes	* Setting is incor * Humidity sensor * Contact failure * Controller failure	or (HuS) de			
Trouble Shooting	Step 1. Replace the humidity sensor. Step 2. Check connector X20A (CPU board) and connector on the Humidity sensor cable located below fan deck. Make sure it is properly connected. Step 3. Turn on the circuit breaker and check if there is DC5V input from the controller. DC 5V CPU board Black – Red : Input Voltage DC5V (Connector X20A) Black – Yellow : Output Voltage Red 9 Yellow 13 Yellow HuS			rom the controller. Example of voltage check	
	Sensor Pin No. Voltage value			alue	
	Humidity	11	13	DC 5\	
	sensor	12	13	refer to "5.4 Humidity Ser	sor Characteristics
	Step 4. Replace the CPU board.				
Controller Action	E431 Alarm display only				

024	E607
Alarm Logic	*Sheet key failure
Possible Causes	*Sheet key (EC6) failure *Faulty cable or connection between Sheet key (EC6) ~Relay board (EC5) ~Operation board (EC3)
Trouble Shooting	 Disconnect cable connectors of sheet key, relay board, and operation board, and check connector pins visually, and secure insert correctly. Replace the sheet key if the alarm is repeated.
Controller Action	E607 Alarm display only

025	E707	
Alarm Logic	Temporary power supply shut down during operation	
Possible Causes	Power supply failure	
Trouble Shooting	Provide correct power supply. Unit stops once and restarts after 3 minutes standby. (Retry 9 times) Continue operation if correct power supply is provided in that time.	
Controller Action	E707 Restart after 3 minutes standby × 9 times retry Retry after 4 hours standby	

026	E801
Alarm Logic	CPU onboard battery failure (E307 and E311 are also generated.)
Possible Causes	CPU onboard battery is drained due to salt water or moisture
Trouble Shooting	<permanent measures=""> Replace CPU board (Lithium battery installed). <emergency measures=""> The unit will operate. However, controller time starts from incorrect time whenever power OFF/ON. therefore, trip data may not shown correctly.</emergency></permanent>
Controller Action	E801 Alarm display only


027	E805 (FA sensor built in the unit only)	
Alarm Logic	FA sensor failure	
Possible Causes	Incorrect setting FA wiring is installed incorrectly. FA sensor failure Controller (CPU board) failure	
Trouble Shooting	 1-1. Check FA sensor setting. LOW-FLY: With FA sensor (Ventilator with insect screen) LOW: With FA sensor (Ventilator without insect screen) OFF: Without FA sensor * Confirmation of setting: 2.3 ¾4 Configuration Set Information 	1-1. Change setting as correct : **12 Configuration Set in paragraph 2.3.
	1-2. Check if FA setting made "LOW-FLY" or "LOW" for unit without FA sensor.	1-2. Set to "OFF" if FA setting made "LOW-FLY" or "LOW".
	2. Turn on the circuit breaker and check if there is DC5V input from the controller. FAS: X8A No.4-6 (Red-Black) X8A CPU board DC5V B-B/R: Input Voltage DC5V B-B/Y: Output Voltage Black Blue/Yellow FAS FAS	2. If there is no input DC5V, then check the controller. If there is input DC5V, then proceed to next step.
	3. Make sure that the FA wire is properly attached to the veroperate the ventilator outlet lever to fully open and fully the FA sensor.	
Controller Action	E805 Alarm display only	

028	E807 (FA sensor built in the unit only)	
Alarm Logic	Ventilator is open during frozen operation.	
Possible Causes	Ventilator is still open when the unit is in frozen mode	
Trouble Shooting	Make sure to fully close ventilator in frozen operation	
Controller Action	E807 Alarm display only	

029	Communication Interrupted (E903)	
Alarm Logic	A communication error between CPU board and operation board	
Possible Causes	Open circuit between operation board (EC3) and CPU board (EC1) Operation board failure CPU board failure	
Trouble Shooting	Step 1. Check if the connector of cable between operation board (EC3) and CPU board (EC1) is inserted securely. Step 2. If there is no connection error between both boards, it seems to be operation board or CPU board failure. Replace in order starting from the CPU board.	
Controller Action	Communication Interrupted (E903) Alarm display only ("Communication Interrupted" is displayed on LCD and E903 is recorded on trip report.)	

Inverter Alarm Diagnosis

Inverter board and detection point of operating condition

101	F528 · F53D E105 · E523 · E524 · E525 · E	528 · E53D
Alarm	Alarm Logic	Possible Causes
Logic & Possible Causes	E105 : Compressor current is too high at starting (≧DC51A)	①Over-current due to compressor overload ②Compressor lock ③Inverter board failure(Current detection part)
Causes	E523 ∶ Compressor overload during operation (≥DC16.1A) E524 ∶ Compressor overload during operation (≥DC19A)	①Over-current due to compressor overload ③Inverter board failure (Current detection part)
	E525 : Compressor speed is down (detection of stepping out) because actual frequency is low against command frequency to compressor	①Speed down due to compressor overload ③Inverter board failure (Frequency detection part)
	E528 : Compressor is not started F528 : E528 is generated 5 times.	Compressor is lock at starting. Inverter board failure (detection part of wave form)
	E53D : Compressor does not operate during operation. F53D : E53D is generated 4 times.	②Compressor is lock during operation ③Inverter board failure (detection part of lock)
Trouble Shooting	Step 1. Check the compressor 1-1. Check insulation and resistance of the com 1-2. Check sound of compressor at starting. Replace compressor if insulation, resistanc Step 2. Replace Inverter board if compressor sound	e is abnormal or noise is created at staring.
Controller Action	r F528 · F53D Unit stop E105 · E523 · E524 · E525 Restart after 3 minutes E528 · E53D Restart after 3 minutes (Retry 5 times, F528, F53D is gener at 4 times.)	

102	F52E • F52F • E52D • E52E		
Alarm	Alarm	Logic	Possible Causes
Logic & Possible	E52D : Fin temperatur	re sensor failure	Inverter board failure (Fin temperature sensor) (Fin temperature ≥ 150°C or -45 ≤ °C)
Causes	F52E : E52E is generated 4 times. E52E : Over current failure		Inverter board failure (IPM part) IPM: Intelligent Power Module
	F52F: E52F is generated 4 times. E52F: Compressor current sensor failure		Inverter board failure (Current detection part)
	F53B : EEPROM failu	re when unit is on	Inverter board failure (EEPROM part) EEPROM : Electrically Erasable Program ROM
Trouble Shooting	Replace Inverter board	d	
Controller Action	E52D	Unit stop Restart after 3 minutes Restart after 3 minutes	(F52E, F52F is generated at 4 times retry.)

103	F536 · F53B E536	· F53C E53C	
Alarm	Alarm Logic		Possible Causes
Logic & Possible Causes	E536: Detect offset error of current sensor at starting F536: E536 is generated 4 times.		Inverter board failure (Current sensor)
	F53B: Power module failure		Inverter board failure (IGBT) IGBT: Insulated gate Bipolar Transistor
	E53C: Charging failure of main circuit capacitor at starting F53C: E53C is generated 4 times.		Inverter board failure (Capacitor short-circuited)
Trouble Shooting	Replace Inverter boa	rd	
Controller Action	F536, F53B, F53C E536 E53C	Unit stop Restart after 3 minutes (F536 Restart after 3 minutes (F530	

104	F53A			
Alarm Logic	Incorrect setting (Cor	ncorrect setting (Controller model)		
Possible Causes	Does not match contr	roller model setting and	compressor model	
Trouble	Check controller model setting according to Configuration Set (Item 2.3 *12).			
Shooting	Model name	Compressor model	Controller model	
	LX10F11B or later	JT80GSDNYR@S	DECOSVa	
	LX10F15A	JT80GJDNYR@S	DECOSV	
Controller Action	F53A Unit stops			

105	E526
Alarm Logic	Actual frequency is higher than command frequency from the controller continues for 5 seconds.
Possible Causes	Lightning surge sometimes shifts the detected rotation speed significantly, leading to abnormal stop of the unit due to over current.
Trouble Shooting	Operation continues if the external factor.
Controller Action	E526 Restart after 3 minutes

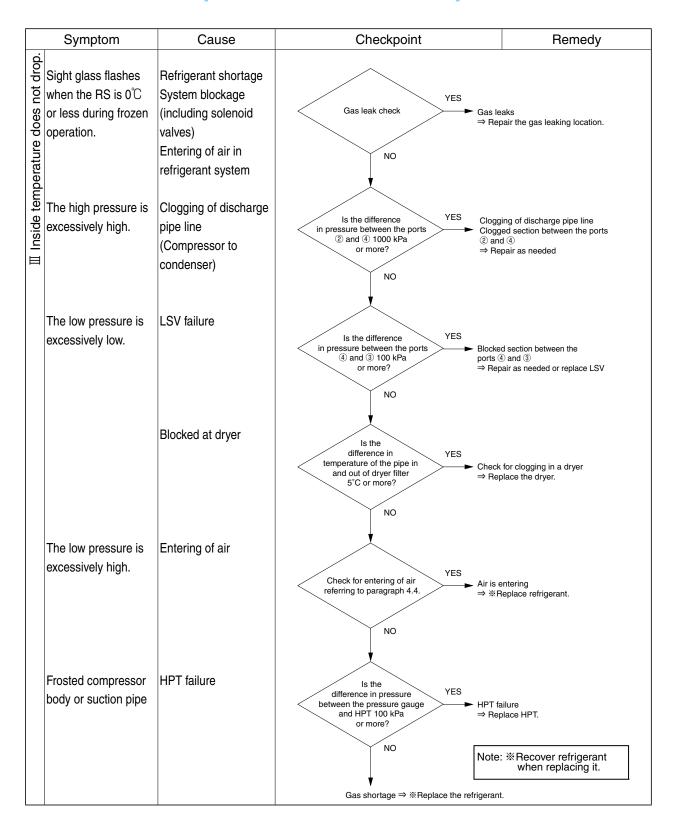
106	E52C
Alarm Logic	Inverter board temperature is over-heated (≥90°C with 260 sec elapse or ≥99°C with 5 sec elapse)
Possible Causes	①Ambient temperature is high (>50°C) ②Inverter board failure (fin temperature detection part) ③Inverter box is heat up due to less air circulation.
Trouble Shooting	①External operating temperature of the unit is up to 50 °C Check cooling air for condenser coil is short circuit or condenser air restriction. ③Clean the radiator fin installed on back side of inverter box and bottom of inverter box in order to remove air restriction. In case of the alarm is repeated after remove external factor ① and ③, replace inverter board.
	E52C Restart after 3 minutes

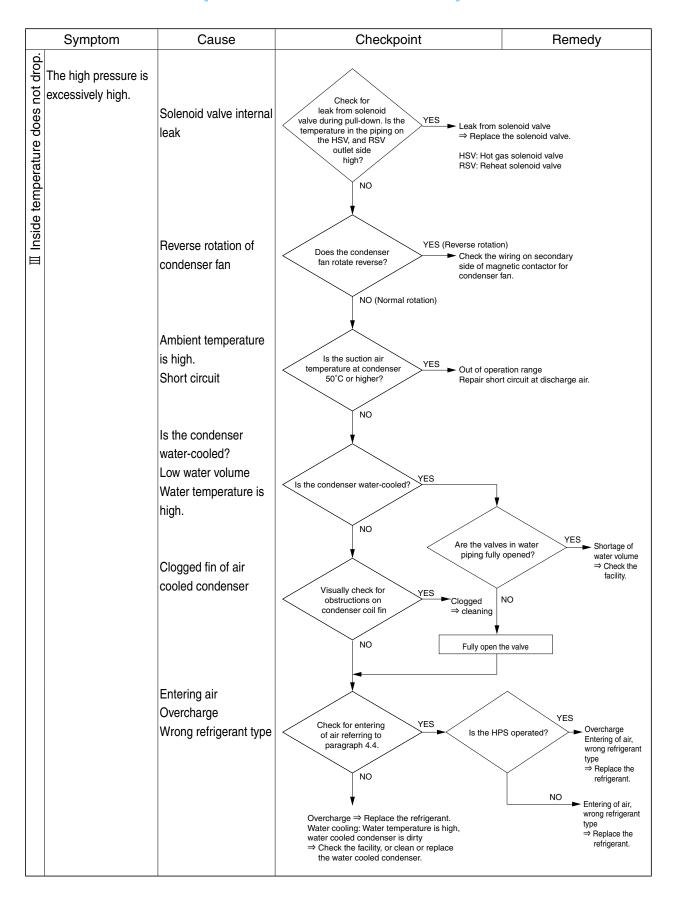
107	E531
Alarm Logic	Unbalanced power phase is supplied
Possible Causes	Abnormal power supply
Trouble Shooting	Regardless alarm is generated, restart after 3 minutes standby. Operation continues if the external factor is improved.
	E531 Restart after 3 minutes

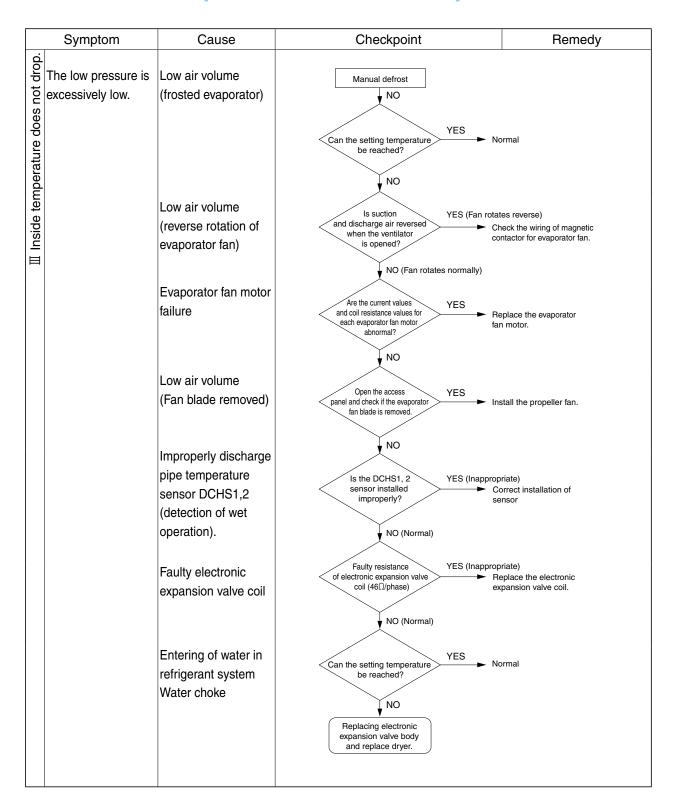
108	E532
Alarm Logic	Voltage in inverter becomes ≧DC790V or ≦DC320V due to power supply voltage≧AC530V or ≦AC300V.
Possible Causes	①Power supply voltage is at high voltage (≧AC535V), or low voltage (≦AC300V). ②Inverter board failure (Voltage detection part)
Trouble Shooting	 ①Check if the actual power voltage is within range (300V~535V) . * Provide the power supply within range if it is out of range. Restart after 3 minutes standby. Operation continues if the power supply condition is improved. ②If the power voltage is within range, it seems to be inverter board failure. Replace inverter board.
Controller Action	E532 Restart after 3 minutes

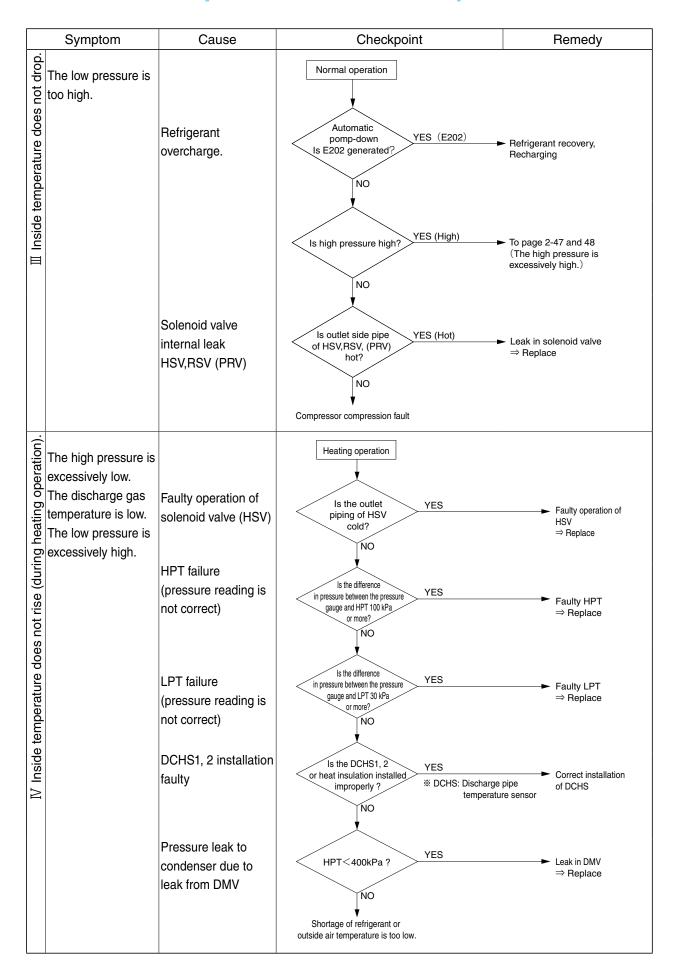
109	E533	
Alarm Logic	①Power supply voltage ≧AC530V or ≦AC300V. ②One of phase is open at power supply to inverter.	
Possible Causes	①Power supply voltage is too high (≧ AC 530V ②Check if there is broken wire (open) or open p (secondary side of circuit breaker).	,
Trouble Shooting	 Power supply check Check if the power supply voltage is within range (AC300V~AC530V). Check if there is a broken wire (open) between L1B, L2B and L3B (INV board) at the secondary side of the circuit breaker. 	①Provide the power supply voltage within range. Electrical parts may have damages. ②Repaire as needed
Controller Action	E533 Restart after 3 minutes	

110	E542 (LX10F15A only)
Alarm Logic	DC fan motor failure
l _	①Fan motor for cooling is lock or faulty cable connection ②Inverter failure
	①Check if fan motor for cooling is lock or faulty cable connection (open or short circuit) ②Replace Inverter board if DC fan motor and wiring of DC fan are no failure.
Controller Action	E532 Alarm display only


111	Communication Interrupted (E5FF)	
Alarm Logic	E5FF: Communication error between CPU board and inverter board during operation	
Possible Causes	①Cable fault or connection error between inverter board and CPU board ②Inverter board failure (Communication part to CPU board) ③CPU board failure (Communication part to inverter board) ④Noise filter board failure	
Trouble Shooting	 Step 1. Set the circuit breaker to ON (UNIT OFF), and then measure the voltage at the inverter board (terminals L1B, L2B and L3B). 1.1 If there is no power voltage, check the power supply line including the noise filter board. 1.2 If there is power voltage but the LED (green) on the inverter board is not flashing, replace the inverter board. Step 2. Disconnect the connectors between the CPU board (connector X19A) and the inverter board (connector X4A), and visually check the connector pins. After checking if any cables are open or short circuited, securely insert the sockets. Step 3. Replace the inverter board or CPU board. 	
Controller Action	Communication Interrupted (E5FF) Restart after 3 minutes ("Communication Interrupted" is displayed on LCD and E903 is recorded on trip report.	


2.7 General Diagnosis


If the unit does not work properly, refer to the following table for diagnosis to repair procedure and repair action need.


		Symptom	Cause	Checkpoint	Remedy
Unit does not operate	A.	Compressor, Evaporator fan, Condenser fan	Faulty power supply	Voltage on primary side of circuit breaker It should be within the voltage range shown in paragraph 1-1.	Check the power supply Check the power supply plug Check for disconnection of cable
t does no		dose not run.	Device malfunction	Mega test check on secondary side of magnetic contactor (Evaporator fan motor, condenser fan motor, compressor)	Replace faulty device.
U			Controller	Unit switch ON/OFF check	Turn the switch ON.
П				Alarm presence (F code)	See the instructions for alarm code of controller in paragraph 2.5.
			Secondary side of power supply transformer	Check for disconnection of F2U (fuse) Check for malfunction in object models shown in paragraph 1.2.	Replace Fuse. Replace faulty device.
				Check for disconnection on secondary side of transformer (Tr) Check if there is AC24V between No.3 and 4 pins of connector X30A (I/O board).	Replace the transformer.
		Evaporator fan runs, but condenser fan and compressor do not run.		Display of controller (ALARM display)	See the alarm code when ALARM is generated
	C.	Evaporator fan and compressor run, but condenser fan does not run.	Normal operation <no action<br="">needed></no>	Check of operation of HPT (E101) by controller display	 Refer to paragraph 2.6. Depend on alarm diagnosis 001
				 Check if the condenser fan has stopped during high-pressure control. (Check that the condenser fan operates at low speed at over 800kPa and at high speed at over 1000kPa.) 	Normal if it operates at low speed at over 800 kPa and at high speed at over 1000 kPa.
			External factor	Visual check debris and damage (including relevant parts such as controllers)	repair as needed
		Condenser fan and compressor run, but evaporator fan does not run.	Faulty electrical system of evaporator fan	Motor coil resistance Ensure that the magnetic contactor is turned ON Voltage on secondary side of magnetic contactor (three-phase)	Replace the fan motor Replace the magnetic contactor
			External factor	Visual check debris and damage (including relevant parts such as controllers)	repair as needed
	E.	Compressor runs, but evaporator fan and condenser fan do not run.	Normal operation <no action<br="">needed></no>	Does "DEFROST" display on the LCD panel? Is the Defrost LED (orange) illuminated?	

	Symptom Cause		Checkpoint	Remedy
I Unit does not operate			Is the voltage of three- phase power supply on the primary side of the circuit breaker AC300V or less? NO Is the fuse F1U circuit opened? NO Is the voltage YES	R or T-phase is open. Faulty power supply (voltage drop) Disconnection of power cable Power plug failure Replace fuse F1U Check open circuit
Unit operates but soon stops.	A. Unit operates but soon stops (full stop).	Refer to the Alarm code list.		
☐ Unit operate	B. Evaporator fan runs, but condenser fan and compressor stop soon.	Cooling OFF (normal)		
	C. Compressor runs, but condenser fan and evaporator fan stop.	Defrost (normal)		

	Symptom	Cause	Checkpoint	Remedy
o			Auditory check	Replace
rati	Abnormal noise	compressor		
Abnormal noise or vibration		Evaporator and	Auditory check	Repair as needed.
ō		condenser fan	Auditory and visual check	
Jise		motors		
ĭ		· Worn bearings		
ma		· Fan blades		
l or		touching		
		Compressor	Auditory check	Tighten bolts.
M	Abnormal vibration	Fan motor	Visual check	
		· Loosen bolt		
		Piping	Auditory check	Fix the cramp.
		· Removed or	Visual check	
		loosen cramp		
_				
Abnormal frosting on compressor	Abnormal frosting		Manual defrost	
)pre	on compressor		Manual defrost	
8	and suction pipe		◀	
e G			<u> </u>	
ting				
ros			Defrost completed NO	
alf				
orm				
l q			YES	
™			↓	
		Condenser fan		
		stop	YES Is condenser fan ▶ Ir	nspection of fan motor
			stopped?	iopocacii ci iaii inetei
			NO	
			↓	
			EIS, EOS There is ga	ap. Inspection of EIS,EOS
		Check of superheat	Is there no gap?	ispection of Ets,EOs
		accuracy		
			There is no gap.	
			↓	
		Faulty operation		
		of electronic	Is there any frost YES	
		expansion valve	on the suction pipe?	check the EEV. ⇒ Replace
		(EEV)		
			NO	
			<u> </u>	
			Completion	

Chapter 3 PTI & Periodic Inspection

- 3.1 Pre-Trip Inspection
- 3.2 Manual Inspection
- 3.3 Automatic PTI
 - 3.3.1 Automatic PTI Step No. and Contents
 - 3.3.2 Automatic PTI Alarm
- 3.4 Periodic Inspection

3.1 Pre-Trip Inspection

Perform a pre-trip inspection of each component and take remedial actions if necessary so that the unit will operate normally. Pre trip inspection includes items are listed below.

(1) Appearance inspection of unit

- ① Physical damage
- 2 Casing insulation through penetration
- 3 Drain hose (dust and clogging)
- 4 Power cable and plug damage
- (5) Condition of refrigerant piping cramp
- 6 Condition of each sensor installation
- ① Loose mounting sections
 - · Bolts and nuts ---- Casing frame, compressor, fan motor, control box, inverter box
 - · Cable glands ---- Control box
- ® Conditions of control box cover packing (water-proof)
- Magnetic contactor contact point
- (10) Condition of Inverter box cover packing (water-proof)

(2) Inspection before unit operation

① Refrigerant leakage inspection

2 Power voltage inspection (Automatic PTI range)

(3) Operation inspection of safety device and control equipment

① Safety device

2 Control equipment

HPSCheck for proper activation of switch when high pressure

is raised by stopping the condenser fan motor.

Solenoid valveInspection of operation (open and close) and leakage

EFMSpeed switchover and rotating direction

EEV, EMV, DMVInspection of operation (open and close) and leakage

(4) Operation in each mode

- 1 Pull-down \rightarrow 0°C
- ② Chilled control 0°C Electronic temperature recorder calibration
- ③ Defrosting
- 4 Pull-down → -18°C
- ⑤ Frozen control -18℃ Electronic temperature recorder calibration
- 6 Dehumidification operation and humidity sensor inspection

Pull-down time, voltage and current

Return, supply air temperature differential, voltage and current Defrosting time

Pull-down time, evaporator fan motor speed switchover

(Temperature difference and rotating direction) voltage and current

Remaining frost inspection

(5) PTI report preparation

Consumables

- Wake-up battery: 2 years
- ②Humidity sensor: Inspect every year. Replace when appropriate.
- ③Refrigerant: Inspect at PTI. Repair as needed. (malfunction caused by moisture entering etc.)
- 4) Power plug: Inspect during PTI. Repair as needed.
- ⑤Power cable: Inspect during PTI. Repair as needed.

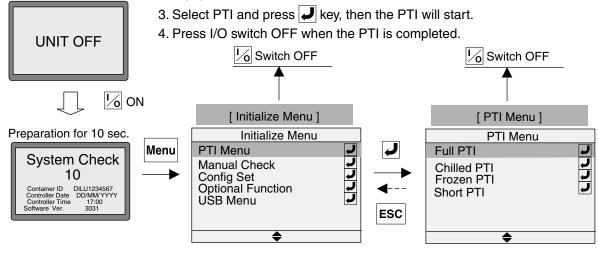
3.2 Manual Inspection

Some items subject to a manual inspection are listed below.

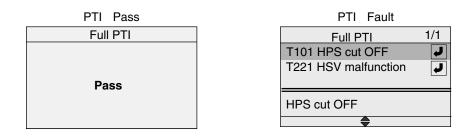
	No.	Inspection item	Inspection content	PTI
	1	Inspection for physical damage		/
		- damage	1) Unit frame	√
			2) Compressor	· ✓
			3) Condenser fan motor	√
	2	Loose mounting bolts	4) Evaporator fan motor	✓
nre		J	5) Control box	✓
ruct			6) Access panel	✓
al st			7) Inverter box	✓
General structure	3	Condition of panels, hinges and lock		/
	4	Drain pan and drain hose cleaning		✓
	5	Control box / Inverter box inspection	Cover packing inspection and replacement	/
	6	Sealing condition of holes through Unit frame	Air leakage and clearance	/
	1	Refrigerant leakage		✓
	2	Refrigerant	Check for moisture in refrigerant and amount of refrigerant	1
	3	Inspection of service port cap	Confirmation of attachment	/
		Liquid solenoid valve LSV		✓
		Hot gas solenoid valve HSV	Charle of installation for a clausid	/
ue	4	Economizer solenoid valve ESV	Check of installation for solenoid valve coil	/
nt system		Reheat solenoid valve coil		/
Refrigerant		Electronic expansion valve EEV		/
Re	5	Economizer modulation valve EMV	Check of installation for motorized valve coil	1
		Discharge modulation valve DMV		1
	6	Functional inspection and replacement of sight glass		/
	7	Condition of cramp on the refrigerant pipes and gauge pipes		✓
	8	Condenser coil cleaning	Clean with fresh water	✓

	No.	Inspection item	Inspection content	PTI
	1	Damage of power cable and plug		✓
	2	Inspect condition of internal wiring		✓
		Inspect electrical	1) Magnetic switch	✓
	3	connections and tighten as	2) Electrical contractors	✓
		needed	3) Terminal block	✓
	4	Condition of monitoring receptacle cover		✓
	5	Condition of PC port cover		✓
	6	Fuse conditions	Open or short connection	✓
	7	Inspection of magnetic switch contact	Contact point inspection	✓
			1) Power cable and plug	✓
em	0	Check electrical	2) Compressor	✓
syst	8	insulation	3) Condenser fan motor	✓
cal			4) Evaporator fan motor	✓
Electrical system	9	Starting procedure inspection		✓
	10	Tomporatura concer	1) Installation condition of sensor	✓
	10	Temperature sensor	2) Alarm indication	✓
	11	PT/CT (voltage and current) Alarm indication		✓
	12	Pressure sensor Alarm indication		✓
	13	Electronic controller	Check of wake-up battery	✓
	4.4	Evaparator for mater	1) Speed switchover	✓
	14	Evaporator fan motor	2) Rotation direction	✓
	15	Condenser fan motor	Rotating direction	✓
	16	Evaporator fan	Deformation and damage inspection	✓
	17	Condenser fan	Deformation and damage inspection	✓
S	1	Check for abnormal noise and vibration during operation		✓
Others	0	Temperature control	1) 0°C operation	✓
ρ	2	function	2) -18°C operation	✓
	З	Defrost function		✓
	4	Clean unit with fresh water		✓

3.3 Automatic PTI


Automatic PTI enable condition
 43 °C ≥ Ambient temperature ≥ -10.0 °C
 Ambient temperature above 43 °C or below -10.0 °C may result in PTI failure.

• Four options for automatic PTI are available, Short PTI, Full PTI, Chilled PTI and Frozen PTI.


PTI	Content		
	Performed in order to find parts abnormalities. PTI continues even if abnormalities are		
Short PTI	found during PTI. PTI terminate if controller detects a compressor failure or evaporator		
	fan is locked.		
E. II DEI	Short PTI, Chilled PTI and Frozen PTI are performed.		
Full PTI	It terminates as soon as abnormalities are found after the completion of Short PTI		
Chilled DTI	Short PTI and Chilled PTI are performed.		
Chilled PTI	It terminates as soon as abnormalities are found after the completion of Short PTI		
Frozen DTI	Short PTI and Frozen PTI are performed.		
Frozen PTI	It terminates as soon as abnormalities are found after the completion of Short PTI		

•Access

- 1. Press MENU key at preparation display after I/O switch ON, and go to "Initialize Menu".
- 2. Select "PTI Menu" and press key in the "Initial Menu", and go to "PTI Menu".

* "Pass" for completion of PTI operation for failure is displayed

3.3.1 Automatic PTI Step No. and Contents

During PTI operation, Step No, contents, and select PTI (Short, Full, Chilled or Frozen) will be displayed.

Step No.	Contents	Short PTI	Full PTI	Chilled PTI	Frozen PTI
P00	Basic data record	1	✓	1	✓
P02	Alarm check on all sensors	1	✓	1	1
P03	EFM check	1	✓	1	✓
P04	RS & SS accuracy check	1	✓	1	1
P06	HPT & LPT accuracy check	1	✓	1	1
P08	INV check	1	✓	1	1
P10	ESV & EMV check	1	✓	1	1
P12	LSV check	1	✓	1	1
P14	HSV check	1	✓	1	1
P16	RSV check	1	✓	1	1
P18	DMV check	1	/	1	1
P20	HPS check	1	✓	1	1
P22	Pump down check	1	✓	1	1
P24	HSV, RSV & ESV check	1	✓	1	1
P50	Pull-down check		1	1	1
P60	0 [°] C control		✓	1	
P70	Defrost operation check		✓	1	1
P80	Pull-down speed check		1		1
P90	-18℃ control		✓		1

3.3.2 Automatic PTI Alarm

Alarm code T * * * is displayed for Automatic PTI.

Step No.	Contents	Alarm code	Conclusion	Possible cause	Check method
P00	Basic data check	No alarm	No conclusion		
P02	Alarm check on all sensors	Same as normal operation	Same as normal operation	Same as normal operation	Same as normal operation
	EFM	T031	EFM operation current is large at high and low speed.	Faulty motor coil	Check motor coil
P03	check	T032	EFM operation current is small at high and low speed. (Broken wire?)	Faulty operation of magnetic contactors EFM wiring fault	Check of magnetic contactors operation Check wiring
P04	RS, SS	T041	The temperature difference of SS and DSS is large.	SS Failure	Compare the SS with the DSS on the control panel.
F04	check	1041	The temperature difference of RS and DRS is large.	RS Failure	Compare the RS with the DRS on the control panel.
P06	HPT, LPT	HPT. LPT Took The pressure		HPT Failure	Compare the high-pressure value between HPT and manifold gauge.
F06	check	T061	difference of HPT and LPT is large.	LPT Failure	Compare the low-pressure value between LPT and manifold gauge.
DOG	INV	T081	The frequency does not match to command frequency.		
P08	check	T082	No pressure difference between high and low pressure.		

				CMV/ wiring failure	Charle EMV and using
		T101		EMV wiring failure	Check EMV coil and wiring.
			EMV or ESV failure	EMV coil burning out ESV coil failure	Check EMV outlet pipe temperature.
	EMV 50V				Check ESV coil and wiring.
P10	EMV, ESV check			ESV valve body failure	Check ESV outlet pipe temperature.
	CHECK	T102	ESV failure	ESV wiring failure	Check ESV coil and wiring.
				ESV coil burning out	Check clicking sound from ESV.
		T103	EMV failure	EMV wiring failure	Check EMV coil and wiring.
	1.007			EMV coil burning out	Check EMV outlet pipe temperature.
P12	LSV check	T121	LSV does not operate.	LSV coil failure	Check LSV coil and wiring.
				LSV valve body failure	Check LSV outlet pipe temperature.
P14	HSV	T141	HSV does not open.	HSV coil failure	Check HSV coil and wiring
	check			HSV valve body failure	Check HSV outlet pipe temperature.
P16	RSV	T161	RSV does not open.	RSV coil failure	Check RSV coil and wiring.
	check		•	RSV valve body failure	Check RSV outlet pipe temperature.
P18	DMV	T181	DMV does not operate.	DMV wiring failure	Check DMV coil and wiring.
	check			DMV coil burning out	Check clicking sound from DMV.
		T201	OFF value is low.		
	HPS check	T202	Does not reset	①HPS failure	①Check HPT.
		T203	HPS: High pressure	②HPT failure	②Compare to manifold
P20			does not rise.	③Gas leakage from	gauges.
			HPS does not operate.	manifold gauges	③Remove manifold
			HPS: High pressure		gauges.
			does not drop.	EEV failure	Charle FEV anil wiring walve hade
	D		Dump down time is	Leakage through HSV	Check EEV coil, wiring, valve body. Check HSV outlet pipe temperature.
P22	Pump down check	T221	Pump down time is too long.	Leakage through RSV	
	cneck		too long.	Leakage through ESV	Check RSV outlet pipe temperature. Check ESV outlet pipe temperature.
				Leakage through HSV	
	HSV, RSV	SV	O a la marial conduca		Check HSV outlet pipe temperature.
P24	ESV	T241	Solenoid valve internal leakage	Leakage through RSV	Check RSV outlet pipe temperature.
	check		iliterrial leakage	Leakage through ESV	Check ESV outlet pipe temperature. Check EEV outlet pipe temperature.
				Leakage through EEV	Check EEV outlet pipe temperature.
			Ambient temperature	Ambient temperature is	
	Pull-down	T501	is out of condition.	below -10℃ and above	Check ambient temperature
P50	check		(Unit is normal.)	43℃	
		T502	Pull-down time is too		
			long.		
P60	0°C control	No alarm	No judgment	E00 (c)	011.500
D74	Defrost	T701	Defrost initiation	EOS failure	Check EOS.
P70	check	T- 0-	conditions out of range	HSV internal leakage	Check HSV outlet pipe temperature.
	.	T702	Defrost time is too long.	EOS failure	Check EOS.
P80	Pull-down	T801	Pull-down time is too		
Boo	check	NIa - I	long.		
P90	-18 [°] C control	No alarm			

3.4 Periodic Inspection

Always to operate the unit normally, periodic inspections for each parts are required in order to confirm the unit condition and maintenance separately pre-trip inspection.

The following table shows an example of the inspection plan.

	No.	Inspection item	Inspection content	2nd year	4th year	8th year
	1	Inspection for physical damage		/	✓	1
	2	Loose mounting bolts		1	✓	1
	3	Condition of panels, hinge and lock		/	1	1
	4	Control box and	Cover packing inspection and replacement	/	1	1
		Inverter box inspection	2) Loose cable gland	1	✓	1
nre			3) Internal cleaning	1	✓	1
General structure	5	Air leakage from unit casing	Air leakage and clearance	1	1	1
зепега	6	Seal inspection and replacement	Ventilator cover packing	✓	✓	1
			1) Compressor	✓	✓	1
	7	Painted area recondition	2) Receiver ✓	✓	✓	✓
	7	(Touch-up paint)	3) Solenoid valve (coil cover)	✓	✓	✓
			4) Unit		✓	✓
			1) Compressor			✓
		Repainting	2) Receiver			✓
	8	перанші	3) Condenser fan motor			✓
			4) Condenser fan			✓
	1	Refrigerant leakage		✓	✓	✓
	2	Compressor	Water entering to compressor electrical terminal	1	✓	1
_	3	Inspection and replacement of sight glass				1
system		Condition of cramp on				
	4	the refrigerant pipes and		✓	✓	✓
rant		gauge pipes				
Refrigerant	5	Condition of thermal		1	1	/
Refi		insulation of refrigerant pipe		•		
	6	Evaporator coil cleaning (by water)		1	✓	1
			1) Water-cleaning	✓	✓	1
	7	Condenser coil cleaning	2) Steam-cleaning (after pumping down the refrigerant)	/	✓	1

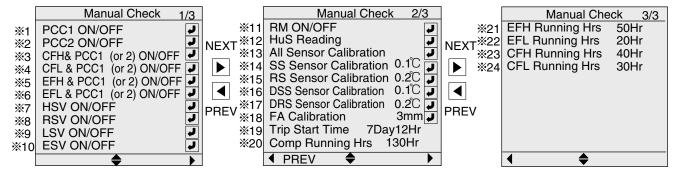
	No.	Inspection item	Inspection content	2nd year	4th year	8th year
	1	Damage of power cable and plug		1	1	1
	2	Inspection of condition of internal wiring		1	1	1
	3	Terminal looseness inspection and retighten if	1) Magnetic switch	1	1	1
		necessary	2) Electronic connection	1	✓	1
	4	Condition of monitoring receptacle cover		1	1	1
	5	Condition of PC port cover		1	✓	✓
	6	Fuse conditions	Open or short connection	✓	✓	✓
			1) Contact point inspection	1	1	1
	7	Magnetic switch contact point inspection and	Replace the contact on evaporator fan motor			1
Electrical system		replacement	3) Replace the contact on condenser fan motor			1
ical			1) Power cable and plug	1	1	1
ectr		Electric insulation check	2) Compressor	1	1	1
ū	8		3) Evaporator fan motor	1	1	1
			4) Condenser fan motor	1	1	✓
			1) Installation condition of sensors	1	✓	✓
	9	Temperature sensor	Inspection of sensor and sensor cable for damage	1	1	1
			3) Alarm indication	1	✓	✓
	10	Humidity sensor	Inspect every year.	1	1	1
	11	PT/CT (voltage and current) Alarm indication		1	1	1
	12	Pressure sensor Alarm indication		1	1	1
	13	Condenser fan motor	Inspection of bearing		1	1
	14	Evaporator fan	Deformation and damage inspection	1	1	1
	15	Condenser fan	Deformation and damage inspection	1	1	1

Chapter 4 Service

- 4.1 Manual Check
- 4.2 Automatic Pumpdown
- 4.3 Connecting and Removing Manifold gauges
- 4.4 Checking Non-Condensable Gas
- 4.5 Sight Glass
- 4.6 Refrigerant Recovery and Charge
 - 4.6.1 Operation Pressure Check
 - 4.6.2 Refrigerant Recovery
 - 4.6.3 Vacuum and Dehydration
 - 4.6.4 Refrigerant Charge
- 4.7 Electrical Circuit and Servicing Precautions
- 4.8 Parts Replacement
 - 4.8.1 Replacing Compressor
 - 4.8.2 Procedure of Evaporator Fan Motor Removing
 - 4.8.3 Inverter board (EC8)
 - 4.8.4 CPU board (EC1)
 - 4.8.5 I/O board (EC2)
 - 4.8.6 Operation board (EC3)
 - 4.8.7 PT/CT board (EC7)
 - 4.8.8 High Pressure Switch (HPS)
 - 4.8.9 High Pressure Sensor (HPT)
 - 4.8.10 Low Pressure Sensor (LPT)
 - 4.8.11 Electronic Expansion Valve (EEV), Economizer Modulation Valve (EMV), Discharge Modulation Valve (DMV)
 - 4.8.12 Solenoid Valve
 - 4.8.13 Dryer
 - 4.8.14 Fusible Plug
 - 4.8.15 Check Valve
 - 4.8.16 Filter and Strainer
- 4.9 Emergency Operation at Controller Malfunction
 - 4.9.1 Wiring Change of Controller
 - 4.9.2 Fixing of EEV Opening
 - 4.9.3 Fixing of EMV Opening
 - 4.9.4 Fixing of DMV Opening

Pre-Cautions for Service Work

- 1. Note Safety PRECAUTIONS, WARNING and CAUTION described in page 3.
- 2. Confirm model name and refrigerant charge amount indicated on model name plate mounted on the left wall in compressor chamber.
- 3. Do not overcharge refrigerant. Judge refrigerant flow amount if it's Normal or Shortage during RS≦0°C in frozen mode by watching sight glass. Refer to paragraph 4.5.
- 4. Use correctly 4 service ports (Refer to paragraph 4.5)
- ①: for low pressure check
- ② : for high pressure check
- ①, ④: for refrigerant recovery, vacuum & dehydration
- 4 : for liquid refrigerant charging
- ①: for gaseous refrigerant charging.
- 5. Do not release R134a into atmosphere. Use recover machine according to present regulation.

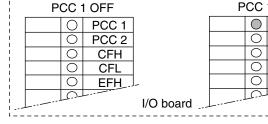

4.1 Manual Check

Manual Check allows the function check of each component and the function.

<Access>

- 1. Press MENU key at preparation display after I/O switch ON, and go to "Initialize Menu".
- 2. Select "Manual Check" in Initialize Menu and press 🖊 key, and go to "Manual Check" consist of 3 screens.
- 3. Press I/O switch to OFF when the "Manual Check" is completed.

Manual Check Function			
	PCC,CFH,CFL,EFH,EFL,CM		
ON/OFF Check	HSV,RSV,LSV,ESV		
	RM (Circuit)		
HuS Sensor Reading	HuS		
Sensor Calibration	SS,DSS,RS,DRS,FA (option)		
Trip Start Time and Reset			
Running Hours and	CM,EFH,EFL,CFH,CFL		
Reset	Civi,EFH,EFL,OFH,OFL		



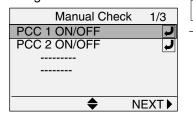
※1 PCC1 ON/OFF Check

1. Press ▼ ▲ key to select PCC1 ON/OFF and press ✔ key to determine. When the difference between high and low

pressure is large (300kPa or more), pressure equalizing is executed so that "Waiting ---" is displayed.

press | wey to determine. Then magnetic contactor for PCC1 is energized and LED for PCC1 lights ON.

PCC 1 ON

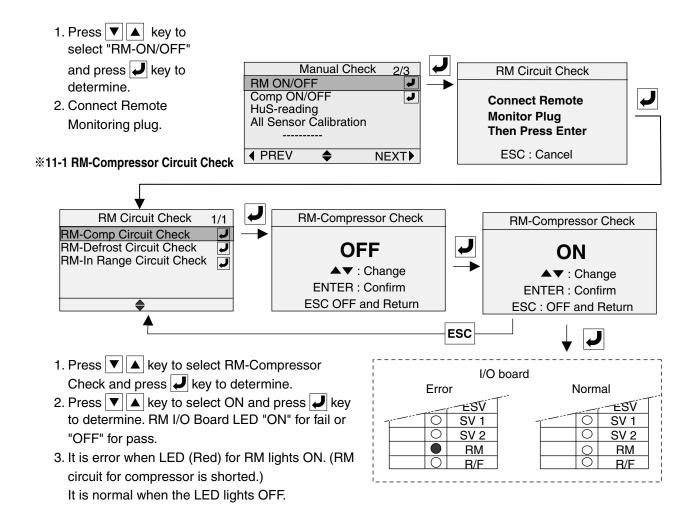

PCC 1


PCC 2

CFH

CFL

EFH



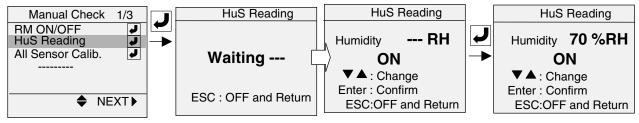
Follow the same procedure for other magnetic contactor or solenoid valve ON/OFF check.

During checking, the During checking ¾3∼ **%2 PCC2 ON/OFF Check** corresponded magnetic %6, the corresponded fan **%3 CFH & PCC1 (or 2) ON/OFF Check** contactor or solenoid valve operation current will be **%4 CFL & PCC1 (or 2) ON/OFF Check** is energized and LED (I/O displayed. board) lights ON (green). ※5 EFH & PCC1 (or 2) ON/OFF Check CFH &PCC2 ON CFH &PCC2 ON %6 EFL & PCC1 (or 2) ON/OFF Check CFH & PCC2 ON PCC1 **%7 HSV ON/OFF Check** PCC2 Current 2.2A **%8 RSV ON/OFF Check** CFH ON CFL **%9 LSV ON/OFF Check** EFH -▲▼ : Change **%10 ESV ON/OFF Check ENTER: Confirm** I/O board

%11 RM (Remote Monitoring) Circuit Check (Option)

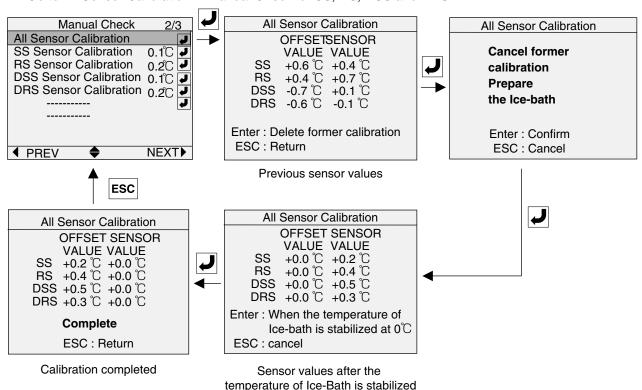
Follow the same procedure for RM-Defrost Circuit and RM-In Range Circuit checks.

%11-2 RM-Defrost Circuit Check


%11-3 RM-In Range Circuit Check

%12 Humidity Sensor Reading (Option)

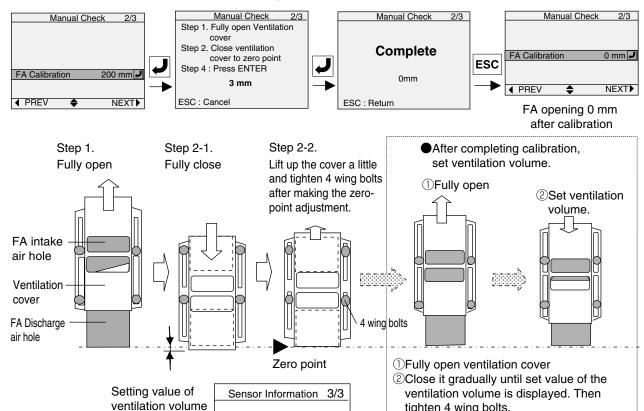
Press ▼ ▲ keys to select HuS-Reading and press ✔ key to determine.


Then EFM runs with high speed and humidity is displayed.

When the difference between high pressure and low pressure is large (300kPa or more), unit enters to pressure equalizing so that "Waiting---" is displayed.

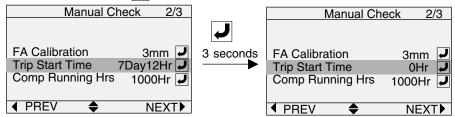
%13 All Sensor Calibration (Option)

Go to All Sensor Calibration in Manual Check for SS, RS, DSS and DRS.



Follow the same procedure for individual sensor calibration.

***15 RS Sensor Calibration (Option) *17 DRS Sensor Calibration (Option)**


※18 FA Calibration (Option)

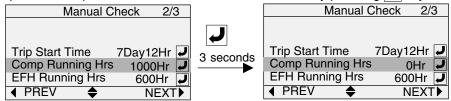
Go to FA Calibration in Manual Check first, then set ventilation volume.

※19 Trip Start Time

Go to Trip Start reset by pressing | | key for 3 seconds.

Ventilation Volume 50 m3/h

◆ PREV

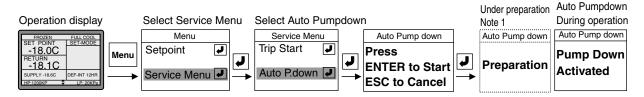

tighten 4 wing bolts.

Ventilation volume is confirmed in the display

according to *3 Sensor Information or battery mode of *15 Data Information in paragraph 2.3.

※20 Comp. Running Hrs

- 1. Current Compressor Running Hrs is 1000 Hr as example below.
- 2. When compressor is replaced, it's recommended to reset 0 Hr by pressing we key for 3 seconds.

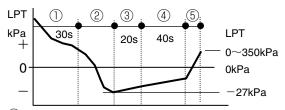

Follow the same procedure for EFH, EFL, CFH and CFL running hrs.

※21 EFH Running Hrs *23 CFH Running Hrs %24 CFL Running Hrs ※22 EFL Running Hrs

4.2 Automatic Pumpdown

An automatic pump down is performed to prevent damage to compressor due to extremely low suction pressure.

• Access to Automatic Pumpdown



Note:

- When PTI starts soon after pressing I/O switch ON, "Preparation" is displayed due to actuation of start control. (Refer to startup control in paragraph 1.4.6)
- "GOOD" is displayed after completion of automatic pump down. Then press I/O switch OFF for the termination.

Automatic Pumpdown Operation

Automatic Pump Down operation consists of 5 steps as below. It is normally terminated for a several minutes but more longer under low ambient temperature ($\leq 0^{\circ}$ C).

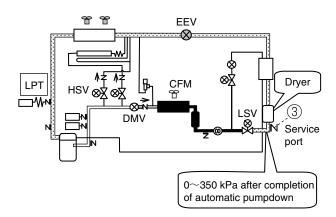
- ①In the case of HPT≦700kPa, unit operates normally for 30 seconds.
- ②Pump Down Operation
 Unit conducts pump down operation with closing LSV and compressor will stop when LPT drops to ≦-27kPa.
- ③Leakage Check
 Keep unit stopping for 20 seconds and check if
 LPT does not rise.

Repeat @ and @ 9 times when ambient temperature<0 $^{\circ}$ C or RS<0 $^{\circ}$ C .

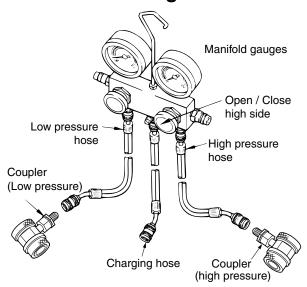
- ④Pressure Equalizing Keep EFM and CFM stopping for 40 seconds, then if LPT<0kPa, open HSV and increase LPT until LPT≥0~350kPa.
- ⑤Termination
 Close HSV when LPT becomes 0~350kPa,
 then close EEV. "GOOD" is displayed and
 automatic pumpdown will be terminated.

•Use of Automatic Pumpdown

1. Replacement of Dryer

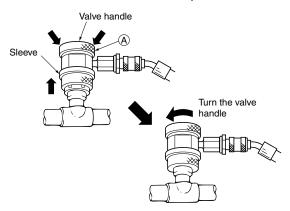

Replace Dryer after automatic pump down is completed. The pressure in the pipe in and out of the Dryer is slightly higher than the atmospheric pressure. Thus, although no ambient air will enter into the piping, replace Dryer quickly in a short period.

CAUTION!!


Ambient air may enter into piping if it is opened for long time after removing Dryer. In this case vacuum and dehydrate the piping after replacement of Dryer.

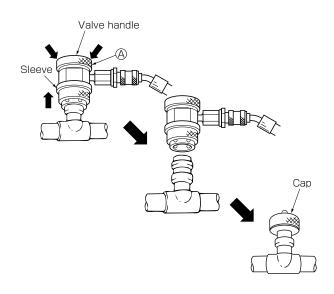
2. Checking the entering of non-condensable gas

After completion of automatic pumpdown, operate CFM and stabilize the pressure in condenser, then check the entering of non-condensable gas. (Refer to paragraph 4.4.)


4.3 Connecting and Removing Manifold Gauges

Structure of manifold gauges

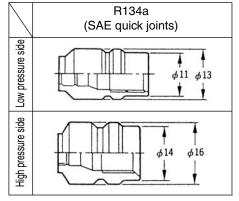
(1) Connecting manifold gauges


Turn the valve handle of coupler counterclockwise (the push pin is retracted). Slide the sleeve upward, and press it against the service port. Then, securely push the valve handle (section A) until a click sound is heard. After the coupler is inserted into the service port, release the sleeve. Next, turn the valve handle clockwise. Lower the push pin, and open the check valve at the service port.

Note: Do not fully turn the valve handle clockwise. Otherwise, the push pin may be broken.

(2) Removal of manifold gauges

Turn the valve handle of coupler counterclockwise (the push pin is retracted). Slide the sleeve upward while pushing down the valve handle (section A) to disconnect the quick joint from the service port.



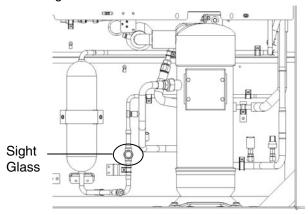
Be sure to attach the cap to the service port after the removal of the manifold.

- Use the pressure indicating function of the controller to check the working pressure as much as possible.
- 2. Use exclusive tools such as manifold gauges, charge hose and charging cylinder for R134a.
- 3. The service ports equipped on unit are exclusively provided for R134a.

Be sure to use the manifold gauges with the quick joints shown above.

4.4 Checking Non-Condensable Gas

If the air or other non-condensable gases are present in the refrigerant system, they will gather in the condenser and the pressure inside the condenser will rise significantly.


In this case, recover all refrigerant and charge the specified charge amount of refrigerant.

Confirm whether the air or other non-condensable gas is present with following procedure.

- (1) Collect refrigerant to condenser coil and receiver by operating automatic pumpdown.
- (2) Operate condenser fan using CFM ON/OFF function in manual check and wait until the air inlet and outlet temperature of condenser becomes equal.
- (3) Connect manifold gauges (High pressure gauge) to port 4. Non-condensable gas are present if the corresponding saturation temperature of gauge pressure is higher than the temperature of the outdoor air.

4.5 Sight Glass

Sight glass shows moisture content in the refrigerant and refrigerant flow rate.

(1) Moisture indication

Recover all refrigerant and recharge new refrigerant if the sight glass indicates yellow as excessive moisture may be contained in the system.

Color		Judgment
	Green	Dry
	Yellow	Wet

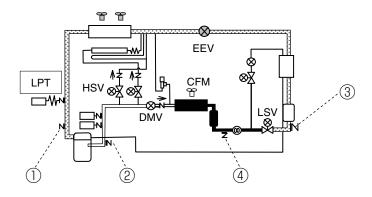
(2) Judgment for refrigerant flow rate, Normal or Shortage?

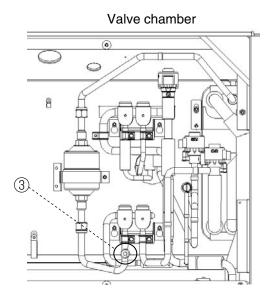
Judge refrigerant flow rate when frozen mode only under $0 \,^{\circ}\mathbb{C}$.

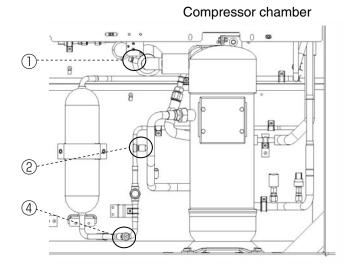
Normal if full is indicated at RS < 0 $^{\circ}$ C .

Shortage if flashing is indicated at RS < 0 $^{\circ}$ C.

Froz	Judgment	
RS<0℃	Full	Normal
RS<0℃	Flashing	Shortage


!∖ CAUTION


Do not judge shortage if flashing is indicated at RS > 0°C frozen mode and at any range of chilled mode.


As flashing here does not mean gas shortage, do not charge with additional refrigerant.

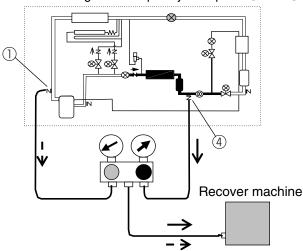
It is possibly caused by overcharging.

4.6 Refrigerant Recovery and Charge

W	ork	Service port	Notes
Operation Pressure	High pressure	2	
cheek	Low pressure	①	
Refrigerant recovery		1) & 4)	Recover all refrigerant from ports 4 and 1.
Vacuum and	dehydration	1) & 4)	Vacuum and dehydrate from ports ④ and ①.after recovering.
R134a	(1) Liquid		Charge liquid refrigerant from port ④ after vacuum and
Refrigerant	charge	4	dehydration.
charge	charge		All specified charge amount of refrigerant can not be charged.
(Refer to note			By operating unit, charge gaseous refrigerant from port ① for
1 of specified	(2) Gaseous		the rest of specified charge amount of refrigerant.
charge amount	charge		Charging liquid refrigerant from port ① causes malfunction of
of refrigerant.)			the compressor.

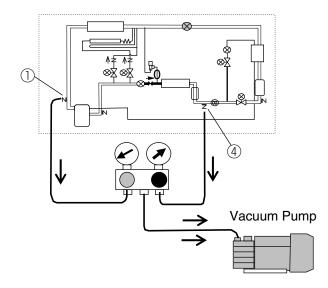
Note 1. Confirm specified charge amount of refrigeration indicated on model name plate.

The model name plate is mounted on the compressor chamber (behind of cable box).


4.6.1 Operation Pressure Check

Use port ② for high pressure check and ① for low pressure check.

4.6.2 Refrigerant Recovery


1.Recover refrigerant completely from ports 4 and 1.

4.6.3 Vacuum and Dehydration

Evacuation and Dehydration inside refrigerant system is very important procedure before charging refrigerant. If possible, heat up the system from outside to accelerate the evaporation of moisture if ambient temperature is lower than 15 $^{\circ}\text{C}$. (Refer to "NOTE" below.)

- 1. Replace dryer if repairing for gas leakage is done or moisture inserting is found.
- Connect vacuum pump to service ports ①
 and ④ and operate the vacuum pump for 1
 hour or longer after reaching to -100kPa. It is
 recommended that the vacuum operation is
 switched ON overnight after work.
- Shut off the pump and check to see if the vacuum holds for 5 minutes as it is. The vacuum and dehydration is completed if vacuum is holding.

- If moisture is existing in the system, proceed to following steps.
- Connect R134a cylinder to manifold gauges and purge air inside the hoses. Open both valves of high and low pressure gauges and charge gaseous R134a and raise system pressure to roughly 20kPa by monitoring with the compound gauge. Hold this state for 15 minutes as it is.
- 2) Connect recovery machine and recover the refrigerant.
- 3) Operate vacuum pump and evacuate unit until the vacuum -100kPa. Shut off the vacuum pump. and check to see if the vacuum holds for 5 minutes as it is.
- 4) Repeat 1),2),3) again and vacuum is still held, vacuum and dehydration is completed.

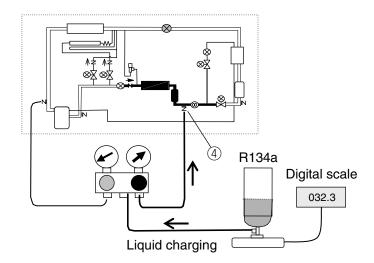
Reference: If moisture exists inside system, lubrication oil for vacuum pump will become muddy and whitish. Refer this for judgment of moisture existence.

If the vacuum is still not held, there might be gas leakage somewhere in the system. Check and repair it.

NOTE

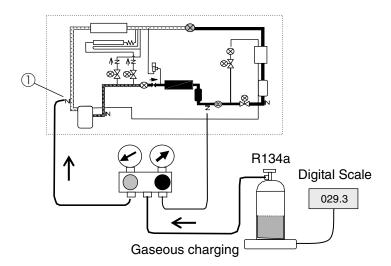
Moisture evaporates at 100 $^{\circ}\mathrm{C}$ under atmospheric pressure. The evaporating temperature drops to lower under lower pressure. For example, according to below table, moisture evaporates at 11.7 $^{\circ}\mathrm{C}$ under vacuum -100kPa. If 11.7 $^{\circ}\mathrm{C}$ or lower, the moisture will not evaporate and ice might form before moisture removal is complete. If the system is heated up from outside under such low ambient temperature, the ice forming might be prevented and moisture evaporation is accelerated.

-----Water, Evaporating Temperature-----


Evaporating Temperature °C	Vacuum pressure kPa
100	0 (Atmospheric)
40	- 93.6
30	- 96.5
20.6	- 98.9
11.7	-100
7.2	-100.2
0	-100.6

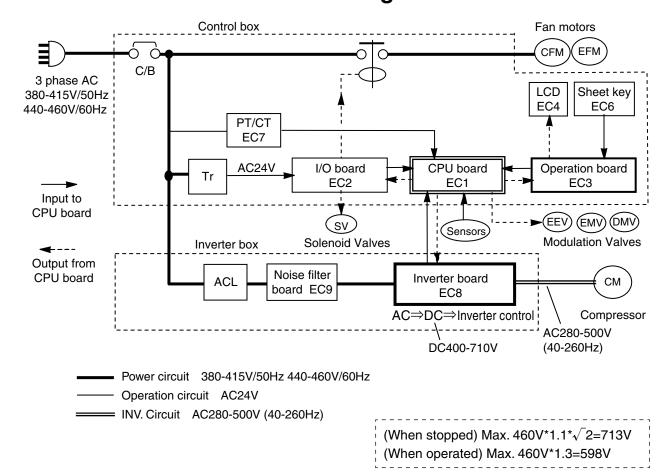
4.6.4 Refrigerant Charge

Charge specified amount of refrigerant after vacuuming and dehydration. Confirm the specified charge amount of refrigeration indicated on model name plate.

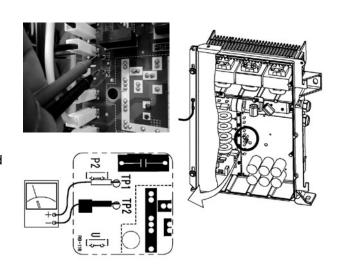

- 1. Place R134a cylinder on digital scale and connect hose to manifold gauges and purge air inside the hose. Record weight of R134a cylinder.
- 2. Charge liquid refrigerant from port ④.

 (All specified charge amount of refrigeration can not be charged.)

3. By operating unit, charge gaseous refrigerant from port ① for the rest of specified charge amount of refrigerant.


Close cock of R134a cylinder after completion of charging.

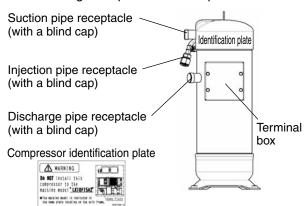
Do not charging liquid refrigerant from port ①. That causes malfunction of the compressor.


4.7 Electrical Circuit and Servicing Precautions

Servicing precautions

- 1. Power circuit
 - Before inspecting the primary side of circuit breaker, be sure to turn off the power for facility side.
- *Even after turning off the circuit breaker, supply voltage is still applied.
- 2. Before inspecting the secondary side of circuit breaker, be sure to turn off the circuit breaker and disconnect power plug.
- 3. Inverter circuit
 - To inspect inside the inverter BOX, ensure to follow the instructions below.
- ①Ensure to leave the unit at least 10 minutes after turning off the circuit breaker before opening the cover of the inverter box.
- %This is because it takes time for the charge accumulated in the capacitor on the inverter board to be released after turning off the circuit breaker.
- ②Open the inverter box cover and, ensure that the voltage between the terminal TP1 and TP2 on the inverter board is lowered to DC50V or below before starting inspection.

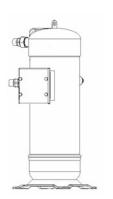
4.8 Parts Replacement


4.8.1 Compressor

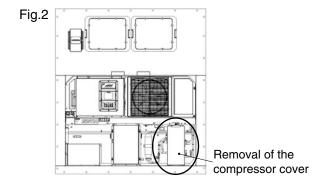
Preparation for installing a new compressor

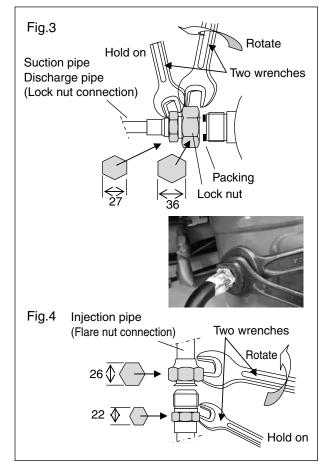
1. Check the replacement compressor and accessories.

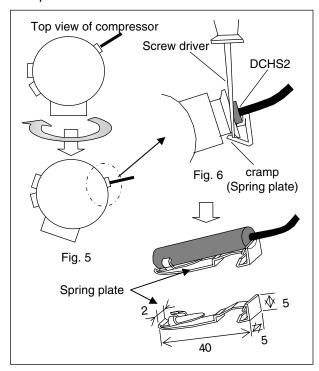
Identification plate is affixed on the replacement compressor. Check the unit model according to the identification plate.


Fig. 1 Replacement compressor

- *Weight 40kg
- *Refrigerant oil DAPHNE FVC68D charged.
- *Dry nitrogen gas charged.




2. Remove the blind caps from the discharge, suction and injection pipe receptacles.


Compressor removal

- 1. Remove the compressor cover (Fig. 2).
- 2. Disconnect the compressor cable from the terminal box.
- 3. Disconnect three connecting pipes (Discharge, suction and injection pipes)
 - Note 1. When removing pipes, use two wrenches so as not to damage the pipes (Figs. 3 & 4).
 - Note 2. After disconnecting the discharge and suction pipes, also remove the packing (Fig. 3).
- Remove the one bolt that holds the compressor top and the four bolts that hold the compressor base.

 Pull compressor out to front, turn the body approximately 20° clockwise and remove DCHS2 sensor mounted on right side. (Fig. 5)
 Hitch a screw driver to the cramp of spring plate to pull out the sensor.

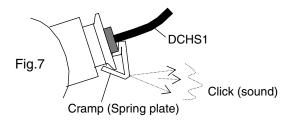
Compressor installation

Temporarily placing the compressor
 Temporarily tighten the four bolts at the compressor base and the one bolt at the compressor top.

2. Connecting

Discharge, suction and injection pipes

- 2-1. Place the provided packing on the discharge and suction pipe connecting ports of the compressor.
- 2-2. After temporarily tightening lock nuts and flare nuts for three pipes, finally tightening them one by one to connect the pipes.

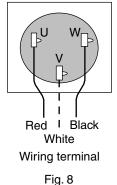

 Use two wrenches for the final tightening of flare nuts so as not to damage the pipes (figs. 3 & 4).
- 2-3. Tightening torque for lock nut and flare nut is based on following.

Discharge pipe: $122N \cdot m$ (1200kgf.m) Suction pipe: $122N \cdot m$ (1200kgf.m) Injection pipe: $54.9N \cdot m$ (538kgf.m)

- 2-4. Apply silicon to cover each lock nut after tightening.
- 4. Fixing the compressor

After connecting the pipes, finally tighten the four bolts to secure the compressor base and the one bolt to secure the compressor top to fix the compressor.

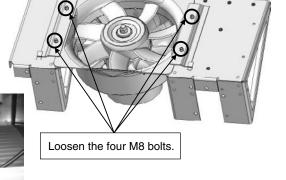
Installing DCHS2 sensor
 Insert an assembled item consisting of the DCHS2 sensor and the spring plate until the cramp sound (Fig. 7).


6. Connecting the compressor cables

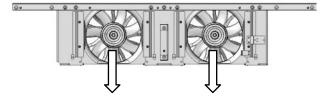
Correctly connect the

correctly connect the compressor cables as per the Terminal Wiring Procedure attached to the compressor.

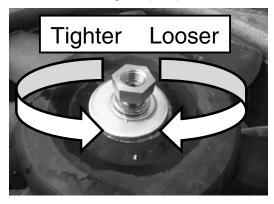
Wrong wiring will reverse the compressor and result in compressor damage.



4.8.2 Replacing the evaporator fan motor


- (1) Removing
- a) Remove access panel.

- b) Loosen 4 pcs bolts (M8) from fan blade fixing metal.
- c) Disconnect power supply connector on fan motor.



d) Pull the fan assembly straight out.

e) Remove fan diffuser and replace fan motor.(The screw of fan fixing nut (M14) is reverse direction.)

(2) Installation

f) Re-stall fan in a reverse way of removing.
 (Securely connect the power supply connector for the fan motor.

4.8.3 Inverter Board (EC8)

Precautions when replacing inverter board

- Wait 10 minutes or more after turning off the circuit breaker and then open the inverter box cover.
- 2) Before starting the work, open the inverter box cover and check that the voltage between terminals TP1 and TP2 on the inverter board is 50VDC or less. (Fig. 1)

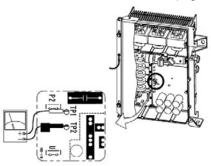


Fig.1 Layout of inverter boards TP1 and TP2

Removing the inverter boards (Fig. 2)

- Loosen the four nuts of the mounting bolts which are securing the front cover, and then remove the front cover.
- 2. Remove all cables connected to the inverter board after check the voltage at TP1 and TP2.
- 3. Remove the inverter board (6 mounting bolts).

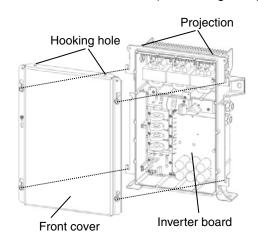


Fig.2 Inverter box

• Mounting the inverter board

The inverter board and the right cover are combined. (Fig. 3)

- Peel off the protective film (transparent) from the heat transfer sheet which is attached to the back of the inverter board plate.
 - *Be careful to avoid getting any foreign matter on the heat transfer sheet to prevent air bubbles from forming in the sheet.
- 2. Install the inverter board. Tightening order as ①⇒②⇒③⇒④⇒⑤⇒⑥. (Fig. 3)
 Bolt tightening torque (M5): 229 ± 34 cN ⋅ m
- 3. Connect the cables to the inverter board.
- 4. Install the front cover. Insert the projection at the top of the box into hooking hole in the top of the front cover, and then tighten the four nuts onto the bolts. Bolt tightening torque (M6): 393 \pm 58 cN \cdot m

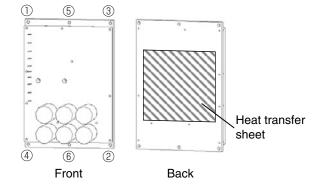
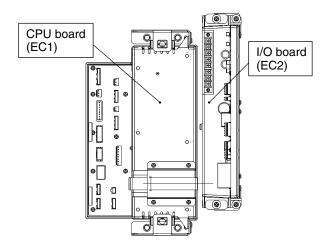



Fig.3 Inverter board

4.8.4 CPU Board (EC1)

Replacement procedure

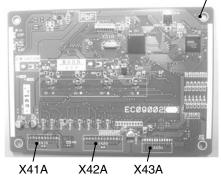
- 1. Removing CPU board
 - Disconnect the cable that connects to CPU board from the connector.
 - Remove the mounting bolts on the top and bottom of CPU board and pull the board forward.
 - 3) Disconnect wake-up battery connection.
- 2. Mounting CPU board

Reverse the above procedure to mount the wake-up battery, connect the cable and mount CPU board using two bolts.

Make sure all connector are connected correctly.

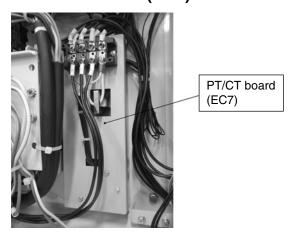
- Uploading the latest software
 After mounting CPU board, upload the latest software.
 - * Download the latest software from the Daikin's web site or request it at Daikin Service Office.
- 4. Necessity of configuration setting Case 1. When using CPU board from Daikin spare part, configuration setting is not required. The configuration setting is not selected on spare part CPU board but the configuration setting values are automatically transmitted from operation board (EC3) when power is ON.

4.8.5 I/O Board (EC2)


- Replacement procedure
- 1. Removing I/O board
 - 1) Remove the cable that connects to I/O board from the connector.
 - Remove the mounting bolts on the top and bottom of I/O board and pull the board forward.
- 2. Mounting I/O board

Reverse the above procedure to install I/O board using two bolts and connect the cable.

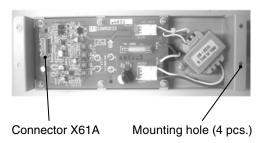
Make sure all connector are connected correctly.


4.8.6 Operation board (EC3)

Mountng hole (4 pcs.)

- Replacement procedure
- 1. Removing operation board
 - Remove the three cables that connect to operation board from the connector.
 - 2) Remove the four mounting bolts.
- Mounting operation board Reverse the above procedure to mount operation board using the four bolts and connect the cable.
- 3. Necessity for configuration setting When using operation board from Daikin spare parts, configuration setting is not required. Configuration setting for operation board from spare parts is not made but that memorized on CPU board is automatically sent to operation board when power is supplied.

4.8.7 PT/CT Board (EC7)


This printed circuit board has the two functions as a measuring instrument and protective device and provide as an interface between the main circuit (high voltage) and controller.

Function

Function	Description
Voltage	Voltage and phase sequence
and phase	detection between R phase and S
sequence	phase is executed by transferring the
detection	voltage waveform to the controller.
Current	Total running current of EFM and
detection	CFM are detected.

- Replacement procedure
- ①Loosen the four mounting bolts.
- ②After replacing the main body, mount the connector by following the original procedure.
- ③After checking the connections thoroughly, carry out P.T.I to confirm the operation.

4.8.8 High Pressure Switch (HPS)

Type	ACB-LB164				
Setting value	OFF 2400kPa (24.47kg/cm²)				
	ON 1900kPa (19.37kg/cm²)				

Replacement method

- 1. Remove cable from inverter box.
- 2. Remove HPS from joint with check valve.
 - **Loosen flare nuts A and B using two wrenches.
 (Fig. 1)
 - *Do not lose push-stick inside the joint. (Fig. 2)
- 3. Installing of HPS
 - %Tighten flare nuts A and B using two wrenches.
 (Fig. 1)
- 4. Make sure no gas leakage after install HPS.

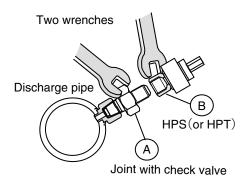


Fig. 1 Use two wrenches when removing and installing.

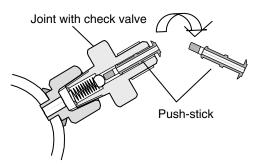
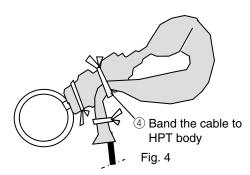


Fig. 2 Do not loss push-stick.

4.8.9 High Pressure Sensor (HPT)

Туре	NSK-BD030F-070

Removal of HPT


- 1. Remove HPT cable from control box.
- 2. Remove heat shrink tube and HPT from joint with check valve.

 - *Do not lose push pin inside the joint with check valve. (Fig. 2)

●Installing of HPT

- 1. Insert heat shrink tube into HPT body.
- Connect HPT to joint with check valve.
 *Tighten flare nuts A and B using two wrenches.
 (Fig. 1)
- 3. Conduct gas leakage test and check to make sure no gas leakage after installing of HPT.
- 4. Set one end of heat shrink tube to joint seat with check valve (Fig. 3) and then
 - ① Shrink the tube by heating up using hair dryer. (Fig. 3)
 - ② Apply silicon sealant to both ends inside of the tube. (Fig. 3)
 - 3 Band both ends of the tube. (Fig. 3)
 - ④ Bend HPT cable and band the cable to HPT body. (Fig. 4)

4.8.10 Low Pressure Sensor (LPT)

Removal of LPT

- 1. Remove LPT cable from control box.
- 2. Remove heat shrink tube and LPT connection tube from joint with check valve.
- %Loosen flare nuts using two wrenches. (Fig. 5)
- *Do not lose push-stick inside the joint with check valve. (Fig. 2)

Installation of LPT

- 1. Insert heat shrink tube into LPT connection tube.
- 2. Connect LPT connection tube to joint with check valve
- *Tighten flare nuts using two wrenches. (Fig. 5)
- 3. Connect LPT to the other end of LPT connection tube.
- %Tighten flare nuts using two wrenches. (Fig. 5)
- 4. Purge air inside LPT connection tube by loosening the flare nut of LPT and tighten the flare nut again.
- 5. Check for make sure there is no gas leakage.

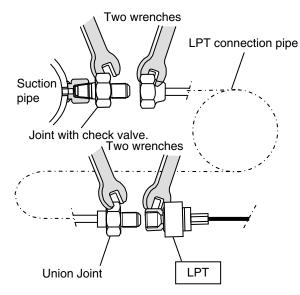
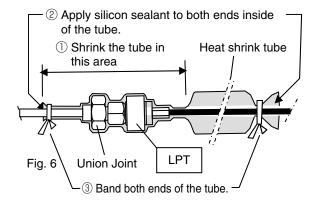



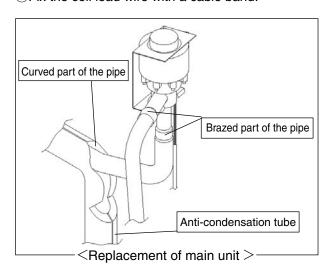
Fig. 5 Use two wrenches for loosening and tightening flare nuts

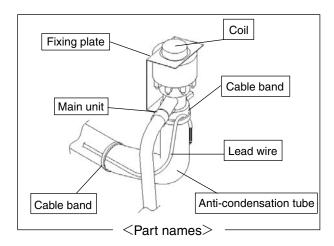
- 6. Set one end of heat shrink tube to left side of union joint. (Fig. 6) and then ① Shrink the tube by heating up using hair dryer.
 - ② Apply silicon sealant to both ends of the tube.
 - 3 Band both ends of the tube. (Fig. 6)

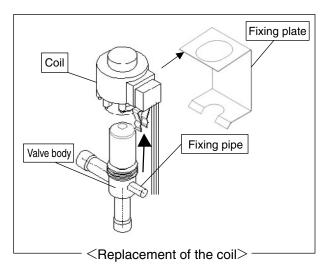
10. 4 Bend the LPT cable as shown in the photograph below, and secure it to the LPT body with the band.

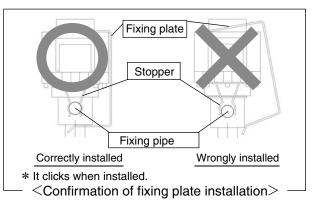
4.8.11 Electronic Expansion Valve (EEV), Economizer Modulation Valve (EMV), Discharge Modulation Valve (DMV)

Name	Туре	
Electronic Expansion Valve	Coil	HCM-MD12DM-2 Socket (Red)
EEV	Body	HCM-BD35DM-2 Valve size: 3.5mm
Economizer Modulation Valve	Coil	HCM-MD12DM-3 Socket (White)
EMV	Body	HCM-BD24DM-1 Valve size: 2.4mm
Discharge Modulation Valve	Coil	HCM-MD12DM-4
DMV	Body	HCM-BD120DM-2


(1) Replacing the coil


- ①Remove the cable band securing coil lead wire.
- ②Disconnect the connector on CPU board.
- ③Remove the fixing plate and the coil.
- 4 Replace the old coil with a new one.
- 5 Attach the coil and the fixing plate.
- ⑥Plug in coil connector on CPU board.
- Trix the coil lead wire with a cable band.


(2) Replacing the body

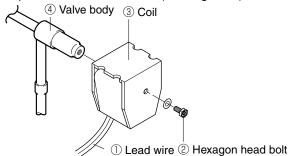

- *Recover refrigerant at first and proceed following step.
- ①Remove the cable band fixing the coil lead wire.
- ②Detach the anti-condensation tube until the curved part of the pipe.
- ③Remove the fixing plate and the coil.
- 4 Un-solder valve piping.
- 5 Solder in the new valve body.
- →Braze the new valve body while cooling it with a wet cloth.

 Maximum body temperature: 120°C (248°F) or less
- 6 Mount the coil and the fixing plate.
- 7)Install the anti-condensation tube.
- ®Fix the coil lead wire with a cable band.

Attention (When installing the coil and the fixing plate)

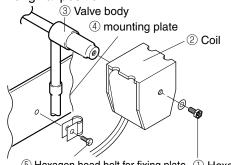
- Securely attach the coil stopper to the valve body fixing pipe.
- If wrongly attached, the expansion valve may function abnormally, damaging the compressor.
- Take care not to allow the fixing plate damage or pinch the lead wire.
- → Malfunction of the expansion valve may arise.

4.8.12 Solenoid Valve


4 Solenoid Valves using in this unit use a common coil and body.

Name	Symbol	Body	Coil
Liquid solenoid Valve	LSV		
Economizer solenoid Valve	ESV	VPV-	NEV-
Hot gas solenoid Valve	HSV	803DQ	MOAB518C
Reheat coil solenoid Valve	RSV		

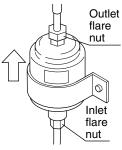
(1) Replacing the coil


- ①Remove the lead wire connector from the inside of the control box, and cut and recover the cable band.
- ②Remove the hexagonal head bolt on the top of the coil and remove the coil.
- ③Replace the coil with a new one and restore the hexagonal head bolt, the cable band and connector on the original position.

When reassembling the coil, the tightening torque should be $1.2 \text{ N} \cdot \text{m}$ (12.2 kg \cdot cm).

(2) Replacing the valve body

- ①Remove the hexagonal head bolt on the top of the coil remove the coil.
- ②Remove the hexagonal head bolt of the mounting plate, and cut the two pipes at the side of the valve body.
 - Disconnect the remaining pipes at the brazed joint sections.
- ③Solder in new valve body while keeping the temperature of the valve body below 120°C (248° F) by cooling.
- ④Install the coil and the hexagonal head bolt of the mounting plate and the connector into their original position.

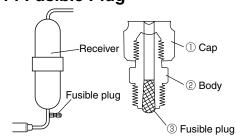

⑤ Hexagon head bolt for fixing plate ① Hexagon head bolt

4.8.13 Dryer

The dryer absorbs moisture from the refrigerant. It also works as a filter to remove particles in the refrigerant system. Replace the dryer if it does not absorb moisture, is blocked, or if the system has been opened to the atmosphere. When installing the new dryer, follow the arrow and do not make any mistake about the installation direction of the dryer.

(1) Replacement procedure

- ①Conduct the automatic pumpdown to collect the refrigerant in the liquid receiver. Refer to paragraph 4.2 for the automatic pumpdown.
- ②Then, quickly replace the dryer with a new one after loosening the flare nuts on the inlet and outlet side of the dryer.
- ③After completing of the replacement of the dryer, be sure to conduct refrigerant leakage test to confirm that no refrigerant leakage is occurring.
- 4 Check on the green color of the sight glass after system start up.
- ⑤Apply silicon sealant to the dryer body including the flare nuts on the inlet and outlet sides.



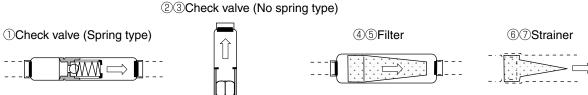
Fully apply silicon sealant to the dryer body including the flare nuts on the inlet and outlet sides.

When put under low temperature and pressure by some operation conditions, ① and ② might have the threads damaged by frozen dew drops.

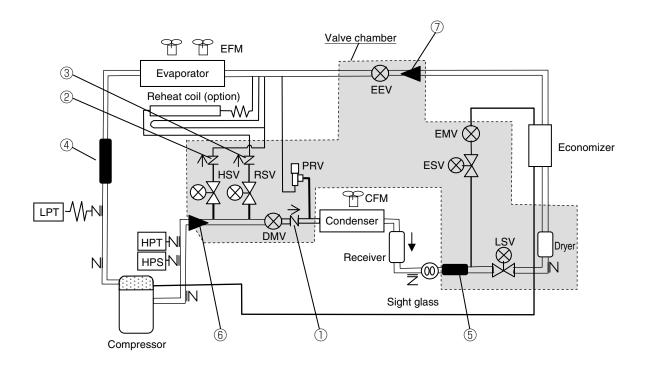
③ may become rusty as a result of coating peel-off at work using a spanner.

4.8.14 Fusible Plug

Replacement of fusible plug
 Refrigerant system pressure rise abnormally
 fusible plug will release pressure.


For replacement, ①-③ shall be replaced.

4.8.15 Check Valve


- Replacement method
- 1. Refer location of check valves to below picture.
- 2. Do not make any mistake about the installation direction (arrow direction) of the check valve
- 3. While brazing, keep valve cool below 120℃ (248°F) with wet cloth.
- 4. Check if there is no gas leakage after completion of brazing.

4.8.16 Filter and Strainer

- Replacement method
- 1. Refer location of check valves to below picture.
- 2. Install the new check valve in the direction which an arrow shows.
- 3. Check if there is no gas leakage after completion of brazing.

		I	T
Name	No.	Size	Application
Chook volvo	1	5/8 ["] , <i>φ</i> 15.9	DMV outlet
Check valve	23	3/8", <i>Ф</i> 9.5	HSV, RSV outlet
Filter	4	1-1/4", 31.8 ¢	Compressor inlet
	5	1/2 ["] , 12.7 φ	LSV, ESV inlet
Strainer	6	5/8 [°] , 15.9 φ	DMV, HSV, RSV inlet
	7	1/2 ["] , 12.7 φ	EEV inlet

4.9 Emergency Operation at Controller Malfunction

Manually change

Following manually changing are required for emergency operation in the case of controller malfunction.

(1) Wiring change of controller

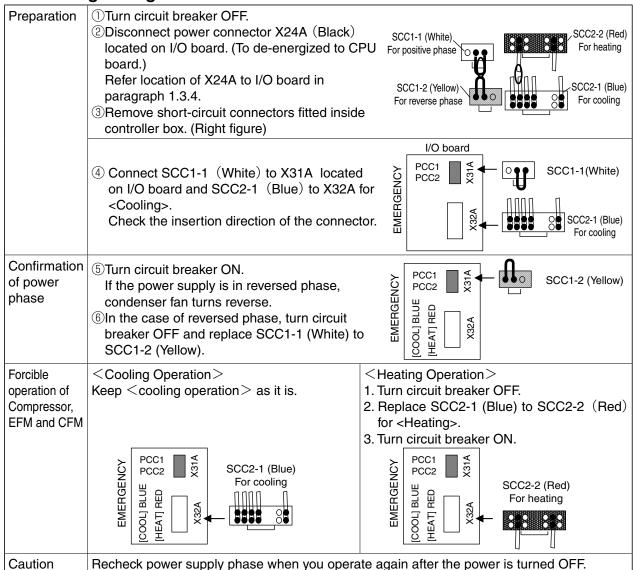
Change wiring to operate compressor, EFM and CFM.

Refer the details to paragraph 4.9.1.

Preparation parts: Shot circuit connector (fitted inside of controller)

(2) Fix the opening of EEV, EMV and DMV

Refer the details to paragraph 4.9.2 to 4.9.4. Preparation parts: Emergency magnet (Parts No. 1896110)


Note: Fixing of opening for EEV, EMV or DMV is applicable for emergency use when controller is normal and EEV, EMV or DMV coil is malfunction.

Operation condition at emergency operation

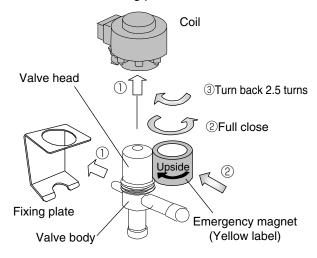
Temperature can not be controlled. Turn the circuit breaker ON or OFF to maintain the target temperature manually.

Operation Mode	Operation Condition	
	Compressor: Continuous running	
	with fixed speed.	
Cooling operation	EFM : Low Speed	
in frozen mode	CFM : High Speed	
	EEV, EMV, DMV: Fixed opening	
	LSV : Open	
Heating operation	EFM : High Speed	

4.9.1 Wiring Change of Controller

4.9.2 Fixing of EEV Opening

For the emergency operation when controller or EEV coil is malfunctioned, EEV opening is fixed using emergency magnet.


The fixing of opening is procedure with fully close first and turn back 2.5 turns using emergency magnet. (Approx. 20% opening)

Emergency magnet: Parts No.1896110.

- ①Disconnect connector X9A (Brown) on CPU board. (To de-energized to EEV coil)
 Refer the location of X9A to CPU board, in paragraph 1.3.4.
- ②Remove fixing plate and EEV coil.
- ③Bring the emergency magnet into contact with valve head, turn the magnet counterclockwise to close fully. There is a small click sound when the valve is fully closed.

(Approximate 7 turns from full open to full close.)

- 4)Then turn back 2.5 turns clockwise.
- 5 Install coil and fixing plate.

Recommendation !!

To quick pull-down, it is recommended EEV opening to wider slightly.

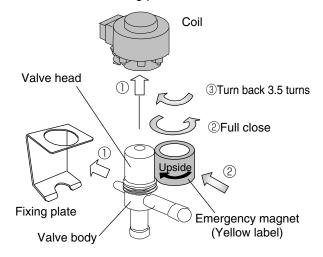
However, keep watching the operation, and close the valve opening if there is a frost around suction pipe due to the wet operation or the degree of super-heat becomes small.

ATTENTION!!

Make sure to reconnect connector X9A (Brown) to the socket on CPU board when the operation returns to normal.

4.9.3 Fixing of EMV Opening

For the emergency operation when controller or EMV coil is malfunctioned, fix EMV opening using emergency magnet.

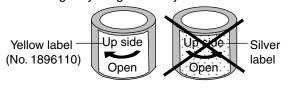

The fixing of opening is procedure with fully close once and turn back 3.5 turns using emergency magnet.(Approx. 40% opening)

Emergency magnet: Parts No.1896110.

- ①Disconnect connector X10A (White) on CPU board. (To de-energized EMV coil)
 Refer the location of X10A to CPU board, in paragraph 1.3.4.
- ②Remove fixing plate and EMV coil.
- ③Bring the emergency magnet into contact with valve head, turn the magnet counterclockwise to close fully. There is a small click sound when the valve is fully closed.

(Approximate 7 turns from full open to full close.)

- 4 Then turn back 3.5 turns clockwise.
- 5 Install coil and fixing plate.

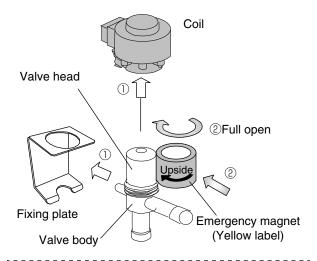


ATTENTION!!

Make sure to reconnect connector X10A (White) to the socket on CPU board when the operation returns to normal.

ATTENTION!!

Use emergency magnet with yellow label.


4.9.4 Fixing of DMV Opening

For the emergency operation when controller or DMV coil is malfunctioned, fix DMV opening fully using emergency magnet.

Preparation : Emergency magnet Parts No.1896110.

- ①Disconnect connector X11A (Blue) on CPU board. (To de-energized to DMV coil)
 Refer the location of X11A to CPU board, in paragraph 1.3.4.
- ②Remove fixing plate and DMV coil.
- ③Bring the emergency magnet into contact with valve head, turn the magnet clockwise to open fully. There is a small click sound when the valve is fully opened. (Approximate 10 turns from full close to full
- open.)

 4 Install coil and fixing plate.

ATTENTION!!

Make sure to reconnect connector X11A (Blue) to the socket on CPU board when the operation returns to normal.

Chapter 5 APPENDIX

- 5.1 Standard Tightening Torque for Bolt and Flare Nut
- 5.2 Temperature Sensor Characteristics
 - ●SS/RS/DSS/DRS/EIS/EOS/Eco In/Eco Out/SGS/AMBS
 - DCHS Sensor Characteristics DCHS1/DCHS2
 - ●NTC type USDA Sensor Characteristics, USDA1, USDA2, USDA3, CTS (Option)
 - ●ST9702-1 type USDA Sensor Characteristics, USDA1, USDA2, USDA3, CTS (Option)
- 5.3 Pressure Sensor Characteristics
- 5.4 Humidity Sensor Characteristics, HuS (Option)
- 5.5 R134a Characteristics
- 5.6 Sequence

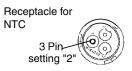
5.1 Standard Tightening Torque for Bolt and Flare Nut

Type	Size	Tightening Torque			Example of Application
Туре	Size	Ν·m	kgf · m	lbf · ft	Example of Application
	M4	1.6	16	1.2	Small parts
	M5	3.0	30	2.3	Solenoid valve
	IVIO	5.0	30	2.0	Inverter box cover
					Slide plate for EFM stator
	M6	5.2	51	3.8	Condenser fan grille
					Solenoid valve chamber cover
Bolt					Fixing plate of evaporator fan diffuser
Boil	M8	12.3	121	9.1	Condenser fan motor
					Control box door
					Access panel
	M10	25.2	247	18.6	
	M12	42.7	418	31.5	Compressor base
	M14	67.8	004	50.0	Every every few abott
	Reverse threaded	67.8	664	50.0	Evaporator fan shaft
	φ6.4, 1/4 ["]	15.7	154	11.6	Low-pressure port
Flare nut	φ9.5, 3/8 ["]	36.3	356	26.8	
	φ12.7, 1/2 ["]	54.9	538	40.5	Dryer, Compressor injection port
Compressor connector	(φ19.1, 3/4 ["])	122	1200	90	Compressor suction and discharge

5.2 Temperature Sensor Characteristics

●SS/RS/DSS/DRS/EIS/EOS/Eco In/Eco Out/SGS/AMBS

Temperature	Temperature	Resistance	Temperature	Temperature	Resistance
(℃)	(°F)	$(k\Omega)$	(℃)	(°F)	$(k\Omega)$
-40	-40	53.54	+1	+33	6.557
-39	-38	50.52	+2	+35	6.270
-38	-36	47.69	+3	+37	5.997
-37	-34	45.04	+4	+39	5.737
-36	-32	42.55	+5	+41	5.490
-35	-31	40.21	+6	+42	5.255
-34	-29	38.01	+7	+44	5.031
-33	-27	35.95	+8	+46	4.818
-32	-25	34.01	+9	+48	4.616
-31	-23	32.19	+10	+50	4.423
-30	-22	30.47	+11	+51	4.239
-29	-20	28.86	+12	+53	4.064
-28	−18	27.34	+13	+55	3.897
-27	−16	25.91	+14	+57	3.737
-26	-14	24.57	+15	+59	3.586
-25	-13	23.30	+16	+60	3.441
-24	-11	22.10	+17	+62	3.303
-23	-9	20.98	+18	+64	3.171
-22	−7	19.91	+19	+66	3.045
-21	-5	18.91	+20	+68	2.925
-20	-4	17.96	+21	+69	2.810
-19	-2	17.07	+22	+71	2.700
-18	-0	16.23	+23	+73	2.596
-17	+1	15.43	+24	+75	2.496
-16	+3	14.68	+25	+77	2.400
-15	+5	13.96	+26	+78	2.308
-14	+6	13.29	+27	+80	2.221
-13	+8	12.65	+28	+82	2.137
-12	+10	12.05	+29	+84	2.057
-11	+12	11.48	+30	+86	1.980
-10	+14	10.94	+31	+87	1.907
-9	+15	10.43	+32	+89	1.837
-8	+17	9.940	+33	+91	1.769
-7	+19	9.480	+34	+93	1.705
-6	+21	9.044	+35	+95	1.643
-5	+23	8.631	+36	+97	1.584
-4	+24	8.239	+37	+98	1.527
-3	+26	7.867	+38	+100	1.473
-2	+28	7.514	+39	+102	1.421
-1	+30	7.178	+40	+104	1.371
-0	+32	6.860	+41	+105	1.323
			+42	+107	1.277
			+43	+109	1.232
			+44	+111	1.190
			+45	+113	1.149
			+46	+114	1.110
			+47	+116	1.072
			+48	+118	1.036
			+49	+120	1.002
			+50	+122	0.9682

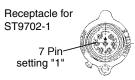

AD95A138C

● DCHS Sensor Characteristics DCHS1/DCHS2

Temperature (℃)	Temperature (°F)	Resistance $(k\Omega)$	Temperature $(^{\circ}\mathbb{C})$	Temperature (°F)	Resistance $(k\Omega)$
10	50	478.765	51	123	75.191
11	51	455.208	52	125	72.229
12	53	432.939	53	127	69.398
13	55	411.880	54	129	66.692
14	57	391.960	55	131	64.105
15	59	373.110	56	132	61.630
16	60	355.269	57	134	59.264
17	62	338.376	58	136	56.999
18	64	322.377	59	138	54.832
19	66	307.220	60	140	52.758
20	68	292.857	61	141	50.772
21	69	279.241	62	143	48.871
22	71	266.330	63	145	47.049
23	73	254.085	64	147	45.305
24	75	242.467	65	149	43.633
25	77	231.442	66	150	42.031
26	78	220.975	67	152	40.496
27	80	211.037	68	154	39.024
28	82	201.598	69	156	37.612
29	84	192.629	70	158	36.258
30	86	184.107	71	159	34.959
31	87	176.005	72	161	33.713
32	89	168.302	73	163	32.517
33	91	160.976	74	165	31.369
34	93	154.006	75	167	30.267
35	95	147.374	76	168	29.208
36	96	141.061	77	170	28.192
37	98	135.051	78	172	27.216
38	100	129.328	79	174	26.278
39	102	123.876	80	176	25.376
40	104	118.681	81	177	24.510
41	105	113.731	82	179	23.677
42	107	109.012	83	181	22.877
43	109	104.512	84	183	22.107
44	111	100.221	85	185	21.366
45	113	96.127	86	186	20.654
46	114	92.221	87	188	19.969
47	116	88.493	88	190	19.309
48	118	84.935	89	192	18.675
49	120	81.537	90	194	18.064
50	122	78.291			

●NTC type USDA Sensor Characteristics, USDA1, USDA2, USDA3, CTS (Option)

Set sensor type "2" in %12 Configuration Set in paragraph 2.3 for NTC type USDA sensor.



Temperature (°C)	Temperature (°F)	Resistance $(k\Omega)$	Temperature $(^{\circ}\mathbb{C})$	Temperature (°F)	Resistance $(k\Omega)$
-20	-4	97.391	10	50	19.893
-19	-2	91.883	11	52	18.964
-18	0	86.721	12	54	18.083
-17	1	81.882	13	55	17.249
-16	3	77.343	14	57	16.457
-15	5	73.034	15	59	15.709
-14	7	69.087	16	61	14.995
-13	9	65.333	17	63	14.320
-12	10	61.805	18	64	13.678
-11	12	58.491	19	66	13.069
-10	14	55.379	20	68	12.491
-9	16	62.442	21	70	11.041
-8	18	49.684	22	72	11.419
−7	19	47.087	23	73	10.922
-6	21	44.641	24	75	10.450
-5	23	42.338	25	77	10.001
-4	25	40.167	26	79	8.574
-3	27	38.120	27	81	8.157
-2	28	36.190	28	82	8.779
-1	30	34.369	29	84	8.411
0	32	32.651	30	86	8.060
1	34	31.028	31	88	7.725
2	36	29.494	32	90	7.406
3	37	28.047	33	91	7.102
4	39	25.678	34	93	6.812
5	41	25.385	35	95	6.535
6	43	24.162	36	97	6.271
7	45	23.005	37	99	6.200
8	46	21.910	38	100	5.779
9	48	20.874	39	102	5.550

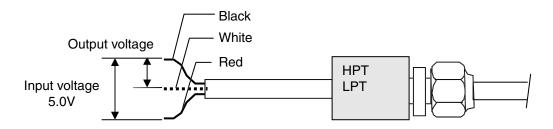
3P156427A

●ST9702-1 type USDA Sensor Characteristics, USDA1, USDA2, USDA3, CTS (Option)

Set sensor type "1" in &12 Configuration Set in paragraph 2.3 for ST9702-1 type USDA sensor.

Temperature (°C)	Temperature (°F)	Resistance $(k\Omega)$	Temperature (°C) Temperature (°F)		Resistance $(k\Omega)$
-20	-4	36.240	10	50	9.196
-19	-2	34.470	11	52	8.821
-18	0	32.800	12	54	8.465
-17	1	31.220	13	55	8.124
-16	3	29.720	14	57	7.800
-15	5	28.310	15	59	7.490
-14	7	26.970	16	61	7.194
-13	9	25.710	17	63	6.911
-12	10	24.510	18	64	6.641
-11	12	23.370	19	66	6.383
-10	14	22.290	20	68	6.136
-9	16	21.270	21	70	5.901
-8	18	20.300	22	72	5.675
-7	19	19.380	23	73	6.460
-6	21	18.510	24	75	5.253
-5	23	17.680	7.680 25 77		5.056
-4	25	16.900	26	79	4.867
-3	27	16.150	27	81	4.685
-2	28	15.440	28	82	4.513
-1	30	14.770	29	84	4.348
0	32	14.120	30	86	4.189
1	34	13.520	31	88	4.036
2	36	12.940	32	90	3.891
3	37	12.380	33	91	3.751
4	39	11.860	34	93	3.617
5	41	11.360	35	95	3.488
6	43	10.880	36	97	3.365
7	45	10.430	37	99	3.247
8	46	9.999	38	100 3.133	
9	48	9.588	39	102	3.024
10	50	9.196	40	104	2.919

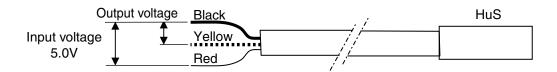
AD970217A


5.3 Pressure Sensor Characteristics

HPT

<u> </u>				
Pressure	Output	Pressure	Output	
(kPa·G)	(V)	(kPa·G)	(V)	
0	0.50	1100	1.62	
100	0.60	1200	1.72	
200	0.70	1300	1.83	
300	0.81	1400	1.93	
400	0.91	1500	2.03	
500	1.01	1600	2.13	
600	1.11	1700	2.23	
700	1.21	1800	2.34	
800	1.32	1900	2.44	
900	1.42	2000	2.54	
1000	1.52	2100	2.64	

● LP7

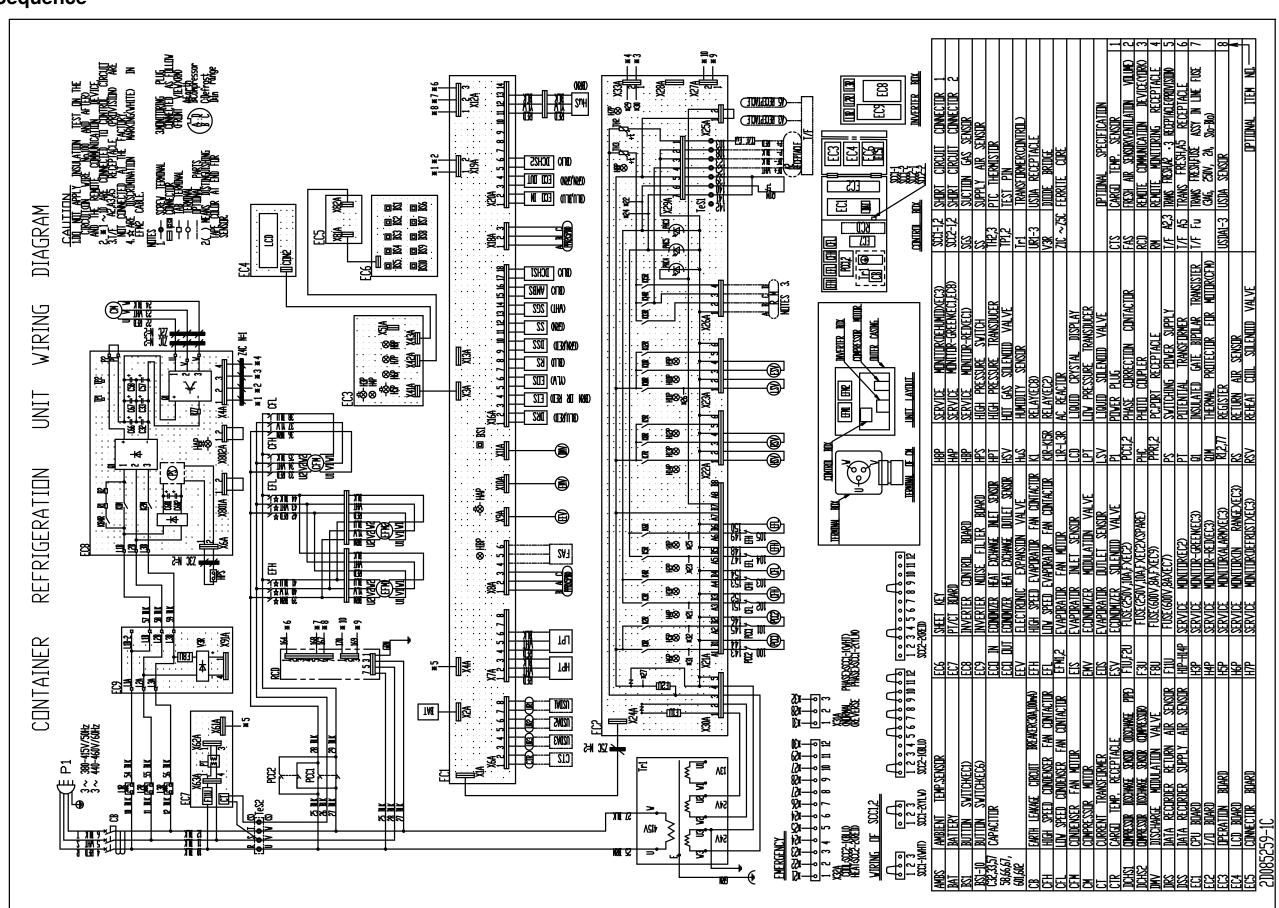

<u> </u>				
Pressure	Output	Pressure	Output	
(kPa·G)	(V)	(kPa·G)	(V)	
-500	-1.03	300	1.42	
-400	-0.72	400	1.72	
-300	-0.42	500	2.03	
-200	-0.11	600	2.34	
-100	0.19	700	2.64	
0	0.50	800	2.95	
100	0.81	900	3.25	
200	1.11	1000	3.56	

5.4 Humidity Sensor Characteristics, HuS (Option)

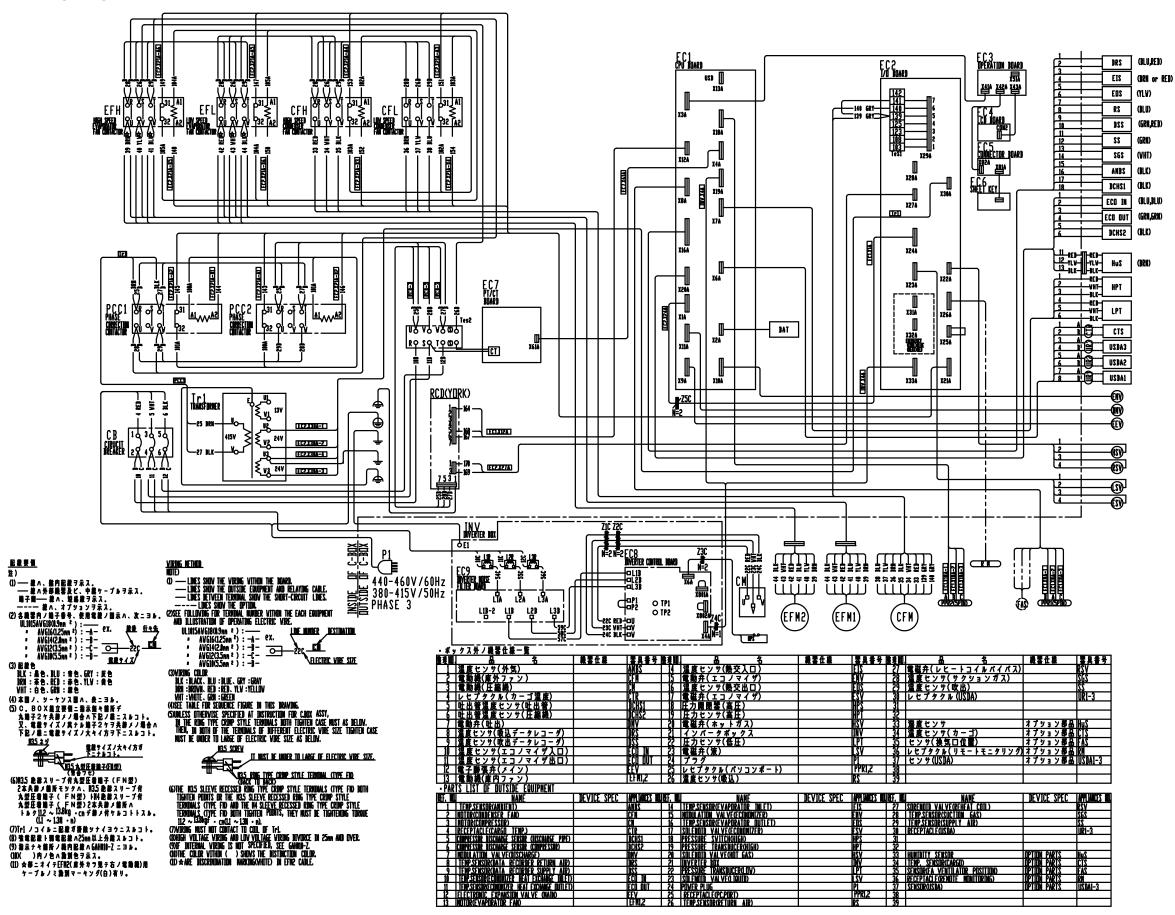
Relative Humidity - Out-put Voltage

Relative Humidity[%]	Out-put Voltage[V]±7%
0	0
10	0.1
20	0.2
30	0.3
40	0.4
50	0.5
60	0.6
70	0.7
80	0.8
90	0.9
100	1.0

AD070082B, 3P204826H


5.5 R134a Characteristics

Temperature		\	Vapor pressure		Temperature		Vapor pressure		
°C	°F	kPa	kg/cm ² ·G	PSIG	°C	°F	kPa	kg/cm ² ·G	PSIG
-40	-40	-49	-0.50	-7.1	20	68	470	4.79	68.1
-39	-38.7	-46	-0.47	-6.6	21	69.8	488	4.97	70.7
-38	-36.4	-44	-0.44	-6.3	22	71.6	507	5.16	73.5
-37	-34.6	-41	-0.41	-5.9	23	73.4	525	5.35	76.1
-36	-32.8	-37	-0.38	-5.3	24	75.2	544	5.55	78.8
-35	-31	-34	-0.34	-4.9	25	77	564	5.75	81.7
-34	-29.2	-31	-0.31	-4.4	26	78.8	584	5.95	84.6
-33	-27.4	-27	-0.27	-3.9	27	80.6	604	6.16	87.5
-32	-25.6	-24	-0.24	-3.4	28	82.4	625	6.37	90.6
-31	-23.8	-20	-0.20	-2.9	29	84.2	647	6.59	93.8
-30	-22	-16	-0.16	-2.3	30	86	668	6.81	96.8
-29	-20.2	-12	-0.12	-1.7	31	87.8	691	7.04	100.1
-28	-18.4	-8	-0.07	-1.1	32	89.6	713	7.27	103.3
-27	-16.6	-3	-0.03	-0.4	33	91.4	737	7.51	106.8
-26	-14.8	1	0.01	0.1	34	93.2	760	7.75	110.2
-25	-13	6	0.06	0.8	35	95	785	8.00	113.8
-24	-11.2	11	0.11	1.5	36	96.8	810	8.25	117.4
-23	-9.4 7.0	16	0.16	2.3	37	98.6	835	8.51	121.0
-22 -21	−7.6 −5.8	21 27	0.21 0.27	3.0 3.9	38 39	100.4 102.2	861 887	8.77 9.04	124.8 128.6
-21 -20	-5.6 -4	32	0.27	3.9 4.6	40	102.2	914	9.04	132.5
-20 -19	-4 -2.2	32 38	0.33	4.6 5.5	40	104	914	9.51	132.5
-18	-0.4	44	0.39	6.3	42	103.6	969	9.88	140.5
-17	1.4	51	0.43	7.3	43	107.0	998	10.17	144.7
-16	3.2	57	0.51	8.2	44	111.2	1027	10.17	144.7
-15	5	64	0.64	9.2	45	113	1057	10.47	153.2
-14	6.8	71	0.71	10.2	46	114.8	1087	11.08	157.6
-13	8.6	78	0.79	11.3	47	116.6	1118	11.39	162.1
-12	10.4	85	0.86	12.3	48	118.4	1149	11.72	166.6
-11	12.2	93	0.94	13.4	49	120.2	1182	12.04	171.3
-10	14	100	1.02	14.5	50	122	1214	12.38	176.0
-9	15.8	108	1.10	15.6	51	123.8	1248	12.72	180.9
_8	17.6	117	1.18	16.9	52	125.6	1281	13.06	185.7
− 7	19.4	125	1.27	18.1	53	127.4	1316	13.42	190.8
-6	21.2	134	1.36	19.4	54	129.2	1351	13.77	195.8
-5	23	143	1.45	20.7	55	131	1387	14.14	201.1
-4	24.8	152	1.55	22.0	56	132.8	1424	14.51	206.4
−3	26.6	162	1.65	23.4	57	134.6	1461	14.89	211.8
-2	28.4	172	1.75	24.9	58	136.4	1499	15.28	217.3
-1	30.2	182	1.85	26.3	59	138.2	1538	15.67	223.0
0	32	192	1.96	27.8	60	140	1577	16.07	228.6
1	33.8	203	2.07	29.4	61	141.8	1617	16.48	234.4
2	35.6	214	2.18	31.0	62	143.6	1658	16.90	240.4
3	37.4	225	2.29	32.6	63	145.4	1699	17.32	246.3
4	39.2	237	2.41	34.3	64	147.2	1741	17.75	252.4
5	41	249	2.53	36.1	65	149	1784	18.19	258.6
6	42.8	261	2.66	37.8	66	150.8	1828	18.63	265.0
7	44.6	274	2.79	39.7	67	152.6	1872	19.09	271.4
8	46.4	287	2.92	41.6	68	154.4	1918	19.55	278.1
9	48.2	300	3.06	43.5	69 70	156.2	1964	20.02	284.7
10	50 51.8	314 328	3.20 3.34	45.5	70 71	158 159.8	2010	20.50	291.4 298.4
11 12	51.8	328 342	3.34	47.5 49.5	71 72	161.6	2058 2107	20.98 21.48	305.5
13	55.4	357	3.46	51.7	73	163.4	2107	21.46	312.6
14	55.4 57.2	372	3.79	53.9	73 74	165.4	2206	22.49	312.6
15	57.2	387	3.79	56.1	74 75	165.2	2257	23.01	327.2
16	60.8	403	4.11	58.4	75 76	168.8	2309	23.54	334.8
17	62.6	419	4.11	60.7	76 77	170.6	2362	24.08	342.4
17	64.4	436	4.27	63.2	77 78	170.6	2415	24.62	350.1
19	66.2	453	4.62	65.6	78 79	174.2	2470	25.18	358.1
	00.2	100	1.02	00.0	80	174.2	2525	25.74	366.1
		1				1,70			500.1


Conversion rate: 1kgf/cm² · G=98.0665kPa

1kPa = 0.145PSIG

5.6 Sequence

Stereoscopic wiring diagram

DAIKIN INDUSTRIES, LTD.

Head Office. Umeda Center Bldg., 4-12, Nakazaki-Nishi 2-chome, Kita-ku, Osaka, 530-8323 Japan.

Tel: 06-6373-4338 Fax: 06-6373-7297

Tokyo Office. JR Shinagawa East Bldg., 11F 18-1, Konan 2-chome, Minato-ku Tokyo, 108-0075 Japan.

Tel: 03-6716-0420 Fax: 03-6716-0230