REVISED

https://daikin-p.ru

DAIKIN

Marine type Container Refrigeration Unit

Service manual

Model
LKEN5BD3
LKEN5BD7

This manual describes the features, functions, operation, and maintenance of the container refrigeration unit. In addition, the manuals listed below are also available.

- Parts list
- Compressor disassembly & reassembly manual Please refer also to these manuals.

DANGER

Do not disconnect plug until power supply is shut off.

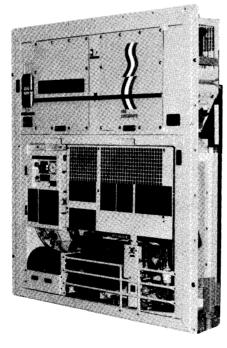
CAUTION

Do not start the unit until plugs are connected and generator plant is operated.

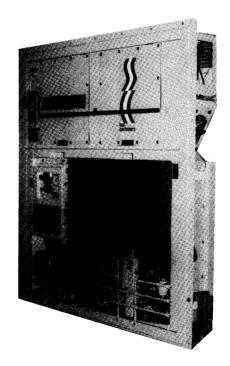
NOTE

- 1. Confirm the function of the recorder when the chart paper is replaced with a new one. Do not mistake the chart of chilled cargo for that of frozen cargo.
- 2 . Accurately tighten the covers for the control box not to make leak in.
- 3 . Confirm that the stop valves in the refrigeration circuits are opened before operation.
- 4 . Be sure to check whether the cargos are cooled down to the temperature for transportation.

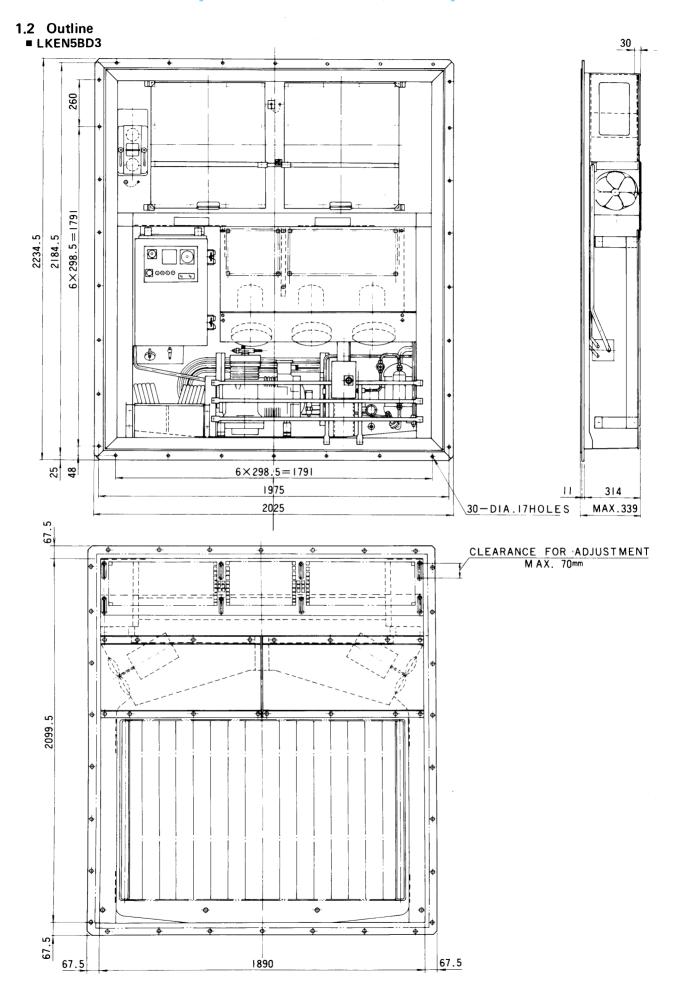
Index

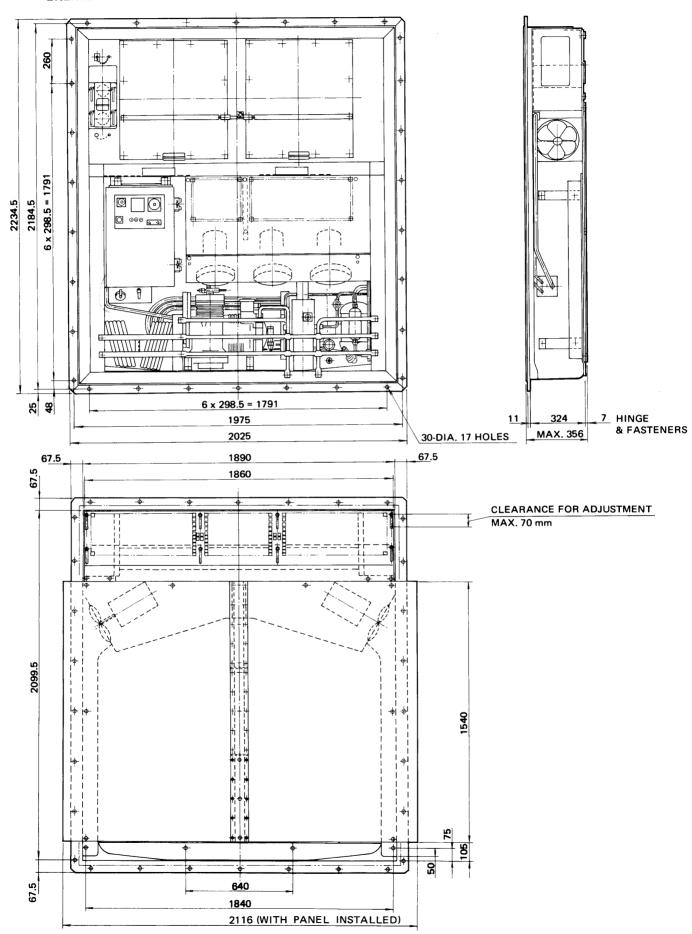

1. Specification	
1.1 General specification	
1.2 Outline	
■ LKEN5BD3	
■ LKEN5BD7	6
1.3 Construction	
■ LKEN5BD3	
(1) Outside	
(2) Inside	
(3) Control box	
■ LKEN5BD7	
(1) Outside	
(2) Inside	
(3) Control box	
1.4 Piping diagram	
■ LKEN5BD3	
■ LKEN5BD7	
1.5 Wiring diagram	
1.5.1 Sequence wiring	
■ LKEN5BD3	
■ LKEN5BD7	
1.5.2 Actual wiring	
■ LKEN5BD7	
1.5.3 How to read wiring diagram	
* *	
2. Operation	25
2.1 Preparation and operation	
2.2 Checking during operation	
2.3 Maintenance after operation	
Operating modes and circuits	29
3.1 Voltage selection system (switching over 200V and 400V class)	
3.2 Air cooled and water cooled operation	
3.3 Frozen operation	31
3.4 Chilled operation-capacity control	
3.5 Heating operation	
3.6 Defrost operation	
3.7 High pressure control	
3.8 Pilot lamps and monitoring circuit	
A Major components and maintenance	
4. Major components and maintenance	-
4.1 Components related with refrigeration circuit	· · · · · · · · · · · · · · · · · · ·
4.1.1 Compressor	•
4.1.2 Air-cooled condenser and evaporator	•
4.1.3 Water-cooled condenser	· · · · · · · · · · · · · · · · · · ·
gg	
4.1.5 Expansion valve	-
4.1.7 Dryer	
4.1.8 Solenoid valves	
4.2 Components related with the air system	7.
4.2.1 Fans and motors	76
4.2.2 Ventilator	74
4.3 Temperature control system	70
4.3.1 Sensor FC-KTRP	
4.3.2 Setpoint selector PC-RP 30/30	· · · · · · · · · · · · · · · · · 44
4.3.3 Controller RFC-92GS	45
	40

4.3.4	Modulating control valve M3F15L	49
4.3.5	Recorder ES190/30	49
4.3.6	Check instrument	51
4.3.7	Checking operation of the controlling devices	
4.4 De	scription on electrical and functional parts	57
4.4.1	Dual pressure switch (HLPS (63HL))	
4.4.2	High pressure control pressure switch (CFHPS (63CL) >	
4.4.3	Oil pressure protection switch (OPS (63QL))	
4.4.4	Water pressure switch 〈 WPS (63W) 〉	60
4.4.5	Defrost termination thermostat (DTT (23D) >	60
4.4.6	Firestat (HTT (26AH))	
4.4.7	Defrost timer 〈 DT (2D ₁) 〉	61
4.4.8	In range timer (IRT (2D ₂) >	61
4.4.9	Electric heaters	61
5. Se	et values of functional parts	62
6. Op	perating pressure and running current	63
7 . Tr	roubles and countermeasures	64
8. P	TI (Pre Trip Inspection)	66
9. H	ow to maintenance	68
	landling method of the stop valve	
	Attaching or removing points of pressure gauge	
	ump down	
940	Charging and purging the refrigerant	71

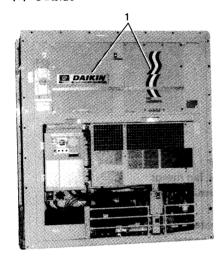

1. Specification

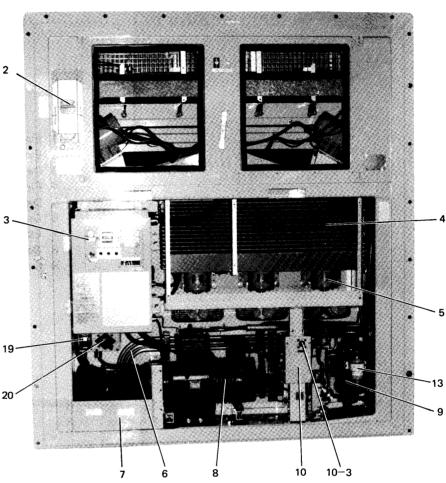
1.1 General specification


Model	LKEN5BD3		LKEN5BD7			
Power supply	AC 200V	3 Phase 50/60Hz				
	AC 220V	3 Phase 60 Hz				
	AC 380 ~ 415 V	3 Phase 50 Hz				
	AC 440V	3 Phase 60 Hz				
	(Dual voltage ration	ng with voltage selector)				
Compressor	Semi hermetic typ	oe (3.75 kW)				
Evaporator	Cross finned coil	type				
Air cooled condenser	Cross finned coil	type				
Water cooled condenser	Hairpin-shaped tu	be-in-tube type				
Accumulator-receiver with	Vertical cylinder	type				
heat exchanger						
Fan	Motor direct driven propeller type					
Fan motor	Single-phase squirrel-cage induction motor					
Defrost						
Heat source	Electric heater					
Initiation	Timer or manual switch.					
Termination	Sensing evaporato	or temperature by defrost	termination thermostat			
Refrigerant control	Thermostatic exp	ansion valve				
Capacity control	Hot gas bypass co	ntrol with modulating co	ntrol valve			
Protection devices	Circuit breaker, C	ver current relay, Dual p	ressure switch, Oil pressure protection			
	switch, Fusible sa	fty plug, Firestat, Compr	essor motor protection thermostat, Fan			
	motor protection	thermostat.				
Refrigerant	R-12: 4.5 (kg)/9.9) (lbs)				
Lubricant	SUNISO 3GS-DI	: 2.3 (1)				
Weight	Approx. 590 (kg))/1300 (lbs)	Approx. 600 (kg)/1320 (lbs)			

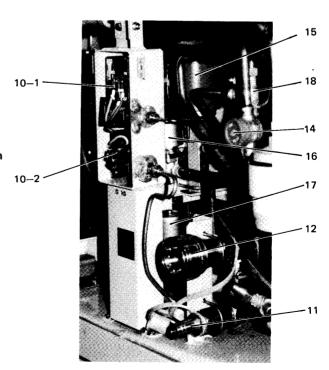


LKEN5BD7

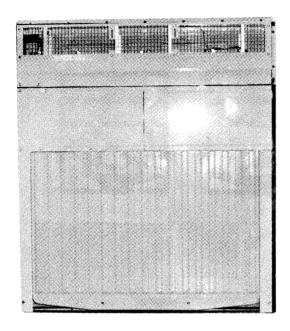

■ LKEN5BD7

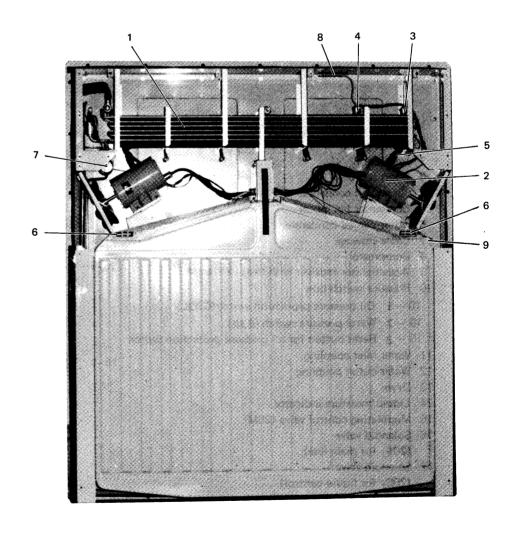


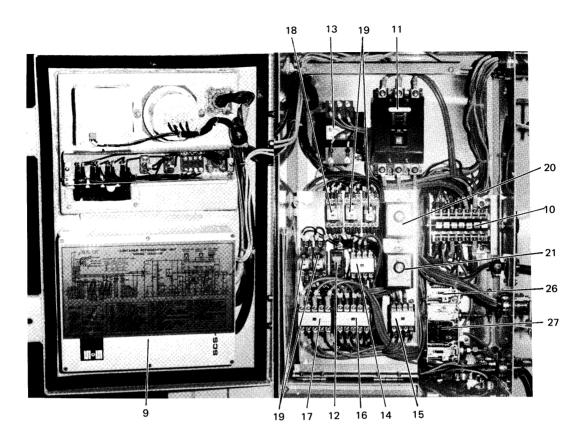
1.3 Construction

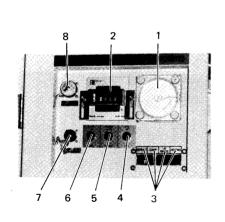

■ LKEN5BD3

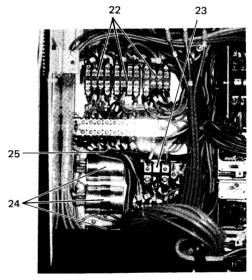
(1) Outside



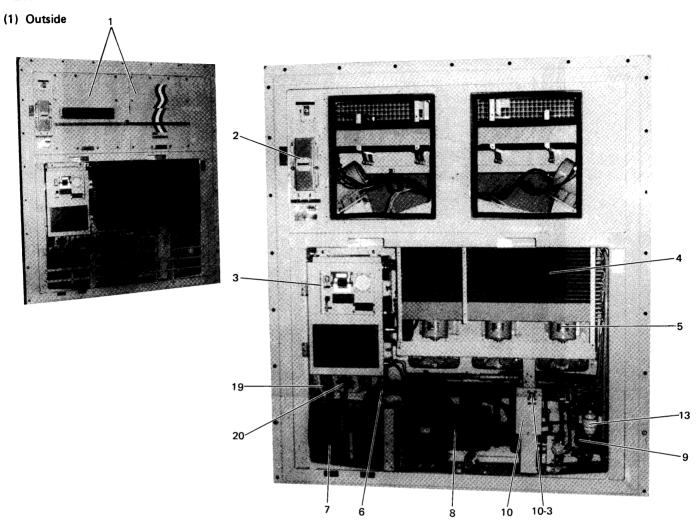

- 1 Access panel
- 2 Ventilator
- 3 Control box
- 4 Air cooled condenser
- 5 Condenser fan motor
- 6 Water cooled condenser
- 7 Cable stowage
- 8 Compressor
- 9 Accumulator-receiver with heat exchanger
- 10 Pressure switch box
 - 10-1 Oil pressure protection switch (63QL)
 - 10 2 Water pressure switch (63W)
 - 10-3 Reset button for oil pressure protection switch
- 11 Water inlet coupling
- 12 Water outlet coupling
- 13 Dryer
- 14 Liquid/moisture indicator
- 15 Modulating control valve (20M)
- 16 Solenoid valve (20S₁ for main line)
- 17 Solenoid valve (20S₂ for liquid control)
- 18 Stop valve for hot gas line
- 19 Power receptacle
- 20 Power selector


(2) Inside



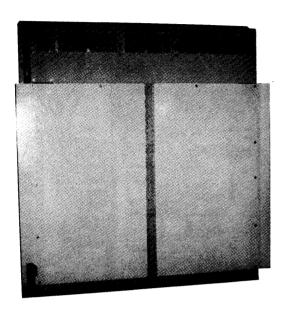

- 1 Evaporator
- 2 Evaporator fan motor
- 3 Defrost termination thermostat
- 4 Firestat
- 5 Defrost heater
- 6 Drain port heater
- 7 Expansion valve
- 8 Return air sensor
- 9 Supply air sensor

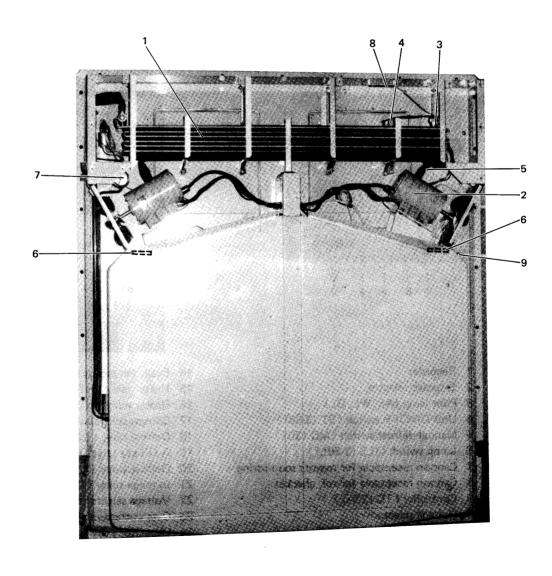
(3) Control box

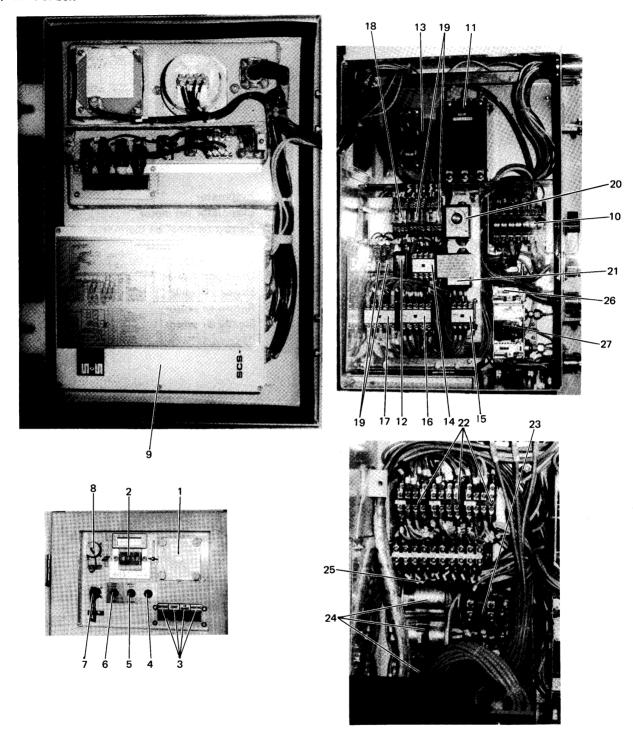


- 1 Recorder
- 2 Setpoint selector
- 3 Pilot lamp (AL, WL, GL)
- 4 Unit ON-OFF switch (3-88)
- 5 Manual defrost switch (3D)
- 6 Lamp switch (3-30L)
- 7 Cannon receptacle for remote monitoring
- 8 Cannon receptacle for ref, checker
- 9 Controller (23A)
- 10 Voltage selector
- 11 Circuit breaker (52C₁)
- 12 Circuit braker (52C₂)
- 13 Transformer (Tr)

- 14 Evap. fan motor relay (88F)
- 15 Heater relay (88H₁)
- 16 Heater relay (88H₂)
- 17 Compressor relay (88C)
- 18 Defrost relay (2DX)
- 19 Auxiliary relay $(2X_4, 5, 6, 7)$
- 20 Defrost timer (2D)
- 21 In range timer
- 22 Voltage selector relay $(2X_1, 2, 3)$
- 23 Over current relay (51C)
- 24 Capacitor (C_{1,2,3})
- 25 Diode (CPD)
- 26 High pressure control switch (63CL)
- 27 Dual pressure switch (63HL)

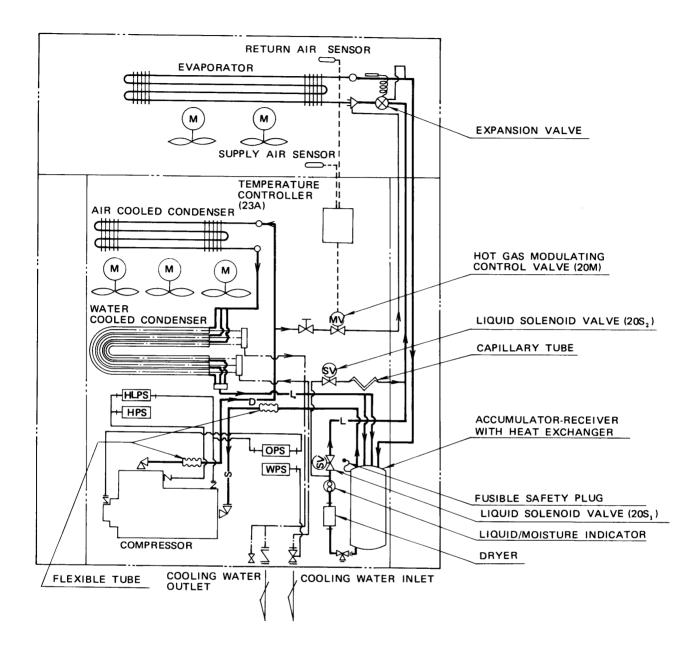

■ LKEN5BD7


- 1 Access panel
- 2 Ventilator
- 3 Control box
- 4 Air cooled condenser
- 5 Condenser fan motor
- 6 Water cooled condenser
- 7 Cable stowage
- 8 Compressor
- 9 Accumulator-receiver with heat exchanger
- 10 Pressure switch box
 - 10-1 Oil pressure protection switch $\langle OPS (63QL) \rangle$
 - 10-2 Water pressure switch $\langle WPS (63W) \rangle$
 - 10-3 Reset button for oil pressure protection switch
- 11 Water inlet coupling
- 12 Water outlet coupling
- 13 Dryer
- 14 Liquid/moisture indicator
- 15 Modulating control valve (MV (20M))
- 16 Solenoid valve
 - $\langle \; \text{LLS}_2 \; (20\text{S}_1) \; \text{for main line} \; \rangle$
- 17 Solenoid valve
 - (LLS₁ (20S₂) for liquid control)
- 18 Stop valve for hot gas line
- 19 Power receptacle
- 20 Power selector


(2) Inside

- 1 Evaporator
- 2 Evaporator fan motor
- 3 Defrost termination thermostat
- 4 Firestat
- 5 Defrost heater
- 6 Drain port heater
- 7 Expansion valve
- 8 Return air sensor
- 9 Supply air sensor

(3) Control box

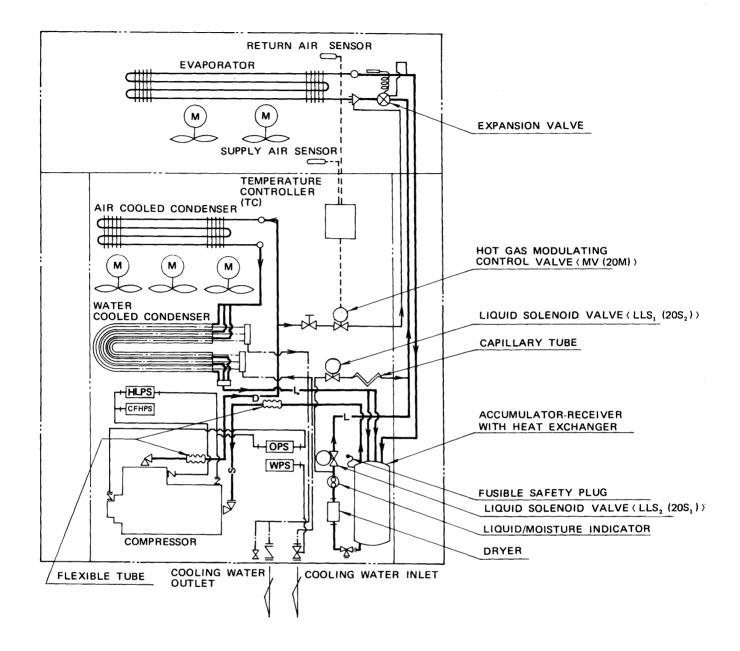


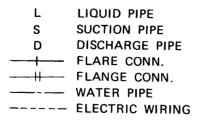
- 1 Recorder
- 2 Setpoint selector
- 3 Pilot lamp (AL, WL, GL)
- 4 Unit ON-OFF switch (ST (3-88))
- 5 Manual defrost switch (MD (3D))
- 6 Lamp switch (ILS (3-30L))
- 7 Cannon receptacle for remote monitoring
- 8 Cannon receptacle for ref. checker
- 9 Controller (TC (23A))
- 10 Voltage selector
- 11 Circuit breaker (CB₁ (52C₁))
- 12 Circuit braker (CB₂ (52C₂))
- 13 Transformer (CTR (Tr))

- 14 Evap. fan motor relay \langle EF (88F) \rangle
- 15 Heater relay (HTR₁ (88H₁))
- 16 Heater relay (HTR₂ (88H₂))
- 17 Compressor relay (C (88C))
- 18 Defrost relay (DR (2DX))
- 19 Auxiliary relay $\langle RL_{4,5,6,7} (2X_{4,5,6,7}) \rangle$
- 20 Defrost timer (DTT₁ (2D₁))
- 21 In range timer $\langle DTT_2 (2D_2) \rangle$
- 22 Voltage selector relay $\langle RL_1, 2, 3 (2X_1, 2, 3) \rangle$
- 23 Over current relay (OL (51C))
- 24 Capacitor $\langle CAP_1, 2, 3 (C_1, 2, 3) \rangle$
- 25 Diode (BD (CPD))
- 26 High pressure control switch (CFHPS (63CL))
- 27 Dual pressure switch (HLPS (63HL))

1.4 Piping diagram

■ LKEN5BD3



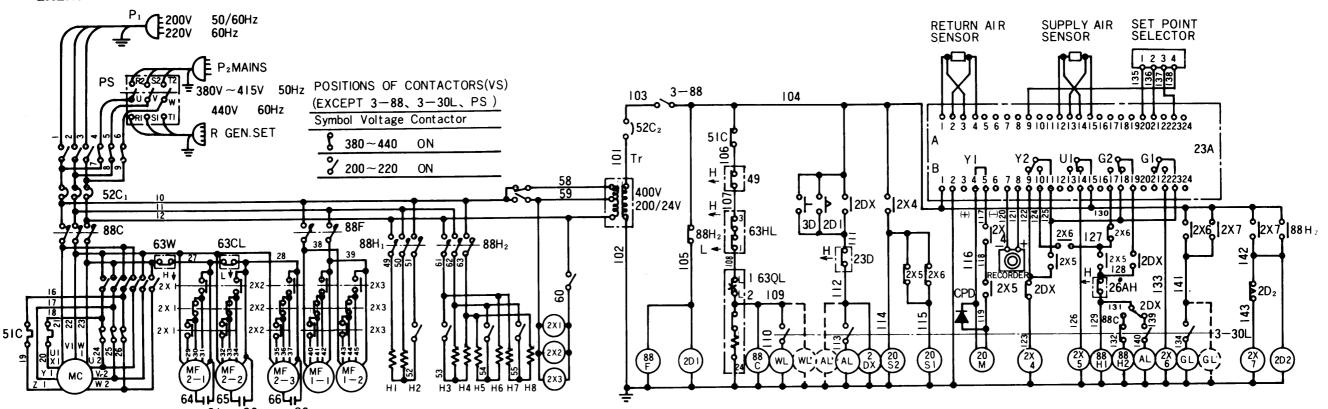

 HLPS: DUAL PRESS. SWITCH

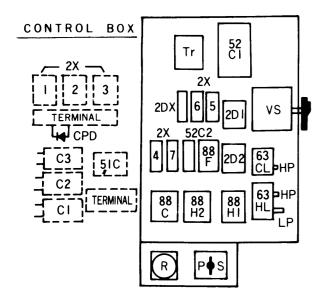
OPS : OIL PRESS. PROTECTION SWITCH HPS : HIGH PRESS. CONTROL SWITCH

WPS: WATER PRESS. SWITCH

■ LKEN5BD7

HLPS (63HL) : DUAL PRESS. SWITCH


OPS (63QL) : OIL PRESS. PROTECTION SWITCH CFHPS (63CL) : HIGH PRESS. CONTROL SWITCH


WPS (63W) : WATER PRESS. SWITCH

1.5 Wiring diagram

1.5.1 Sequence wiring

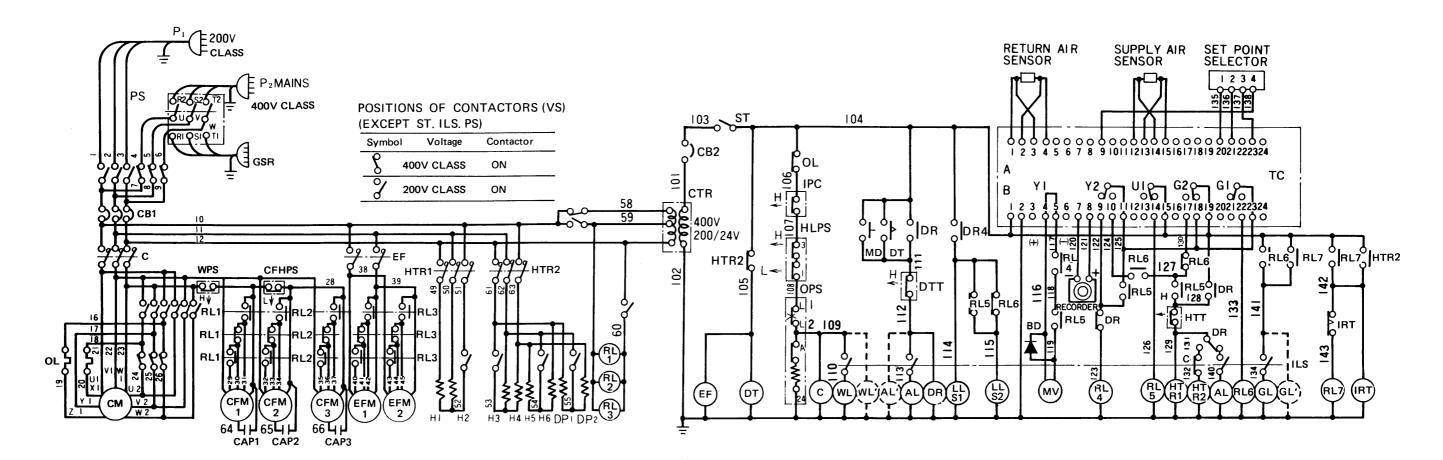
■ LKEN5BD3

	DOWER BLUG	PS	POWER SELECTOR	2DX	DEFROST RELAY
	POWER PLUG		VOLTAGE SELECTOR	63CL	HIGH PRESSURE CONTROL SWITCH
	CIRCUIT BREAKER	VS			DUAL PRESSURE SWITCH
88C	MAGNETIC SWITCH FOR COMPRESSOR	3-88	ON-OFF SWITCH	63HL	
88F	MAGNETIC SWITCH FOR FAN MOTOR	3-30L	LAMP SWITCH	63QL	OIL PRESSURE PROTECTION SWITCH
	MAGNETIC RELAY	23D	DEFROST TERMINATION THERMOSTAT	63W	WATER PRESSURE SWITCH
	COMPRESSOR MOTOR	26AH	FIRESTAT	С	CAPACITOR
		23A	TEMPERATURE CONTROLLER	CPD	CONTACT PROTECTION DIODE
MF,	EVAPORATOR FAN MOTOR			2D.	DEFROST TIMER
MF ₂	CONDENSER FAN MOTOR	GL,WL,AL		2D ₂	IN RANGE TIMER
H,~H,	ELECTRIC HEATER	51C	OVER CURRENT RELAY	-	
H,,,	DRAIN PORT HEATER	49	COMPRESSOR PROTECTOR	Υ,	CONTROLLER (20M VOLTAGE)
	MODULATING VALVE	20S	SOLENOID VALVE	Y ₂	CONTROLLER (COMP/HEATER RELAY)
	POWER RECEPTACLE	Tr	TRANSFORMER	G,	CONTROLLER (HIGH LIMIT RELAY)
			MANUAL DEFROST SWITCH	G ₂	CONTROLLER (LOW LIMIT RELAY)
88H	MAGNETIC SWITCH FOR HEATER	3D	WANGAL BETTION STITLE	U,	CONTROLLER (MODE CHANGE RELAY)
		l		-	

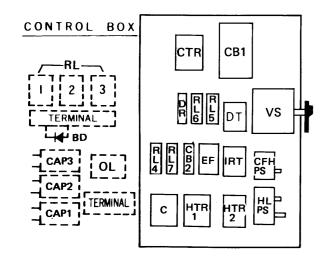
NOTES

1. Monitoring plug connected as follows.

A: Earth


B: Compressor

C: Defrost


C: Defrost (AL)
D: In range temp. (GL)

2. Broken line shows external wiring.

■ LKEN5BD7

POWER PLUG

CB (52C)	CIRCUIT BREAKER	VS (VS)	VOLTAGE SELECTOR	CFHPS (63CL)	HIGH RESSURE CONTROL SWITCH
C (88C)	MAGNETIC SWITCH FOR COMPRESSOR	ST (3-88)	ON-OFF SWITCH	HLPS (63HL)	DUAL PRESSURE SWITCH
EF (88F)	MAGNETIC WITCH FOR FAN MOTOR	ILS (3-30L)	LAMP SWITCH	OPS (63QL)	OIL PRESSURE PROTECTION SWITCH
HTR (88H)	MAGNETIC SWITCH FOR HEATER	MD (3D)	MANUAL DEFROST SWITCH	WPS (63W)	WATER PRESSURE SWITCH
RL (2X)	MAGNETIC RELAY	DTT (23D)	DEFROST TERMINATION THEMOSTAT	CAP (C)	CAPACITOR
CM (MC)	COMPRESSOR MOTOR	HTT (26AH)	FIRESTAT	BD (CPD)	CONTACT PROTECTION DIODE
EFM (MF ₁)	EVAPORATOR FAN MOTOR	TC (23A)	TEMPERATURE CONTROLLER	DT (2D ₁)	DEFROT TIMER
CFM (MF ₂)	CONDENSER FAN MOTOR	GL, WL, AL (GL, WL, AL)	LAMP	IRT (2D ₂)	IN RANG TIMER
H (H _{1 ~6})	ELECTRIC HEATER	OL (51C)	OVER CURRET RELAY		
DP (H _{7,8})	DRAIN PORT HEATER	IPC (49)	COMPRESSOR PROTECTOR		
MV (20M)	MODULATING VALVE	LLS (20S)	SOLENOID VALVE		
GSR (R)	POWER RECEPTACLE	CTR (Tr)	TRANSFORMER		

DR (2DX)

DEFROST RELAY

POWER SELECTOR

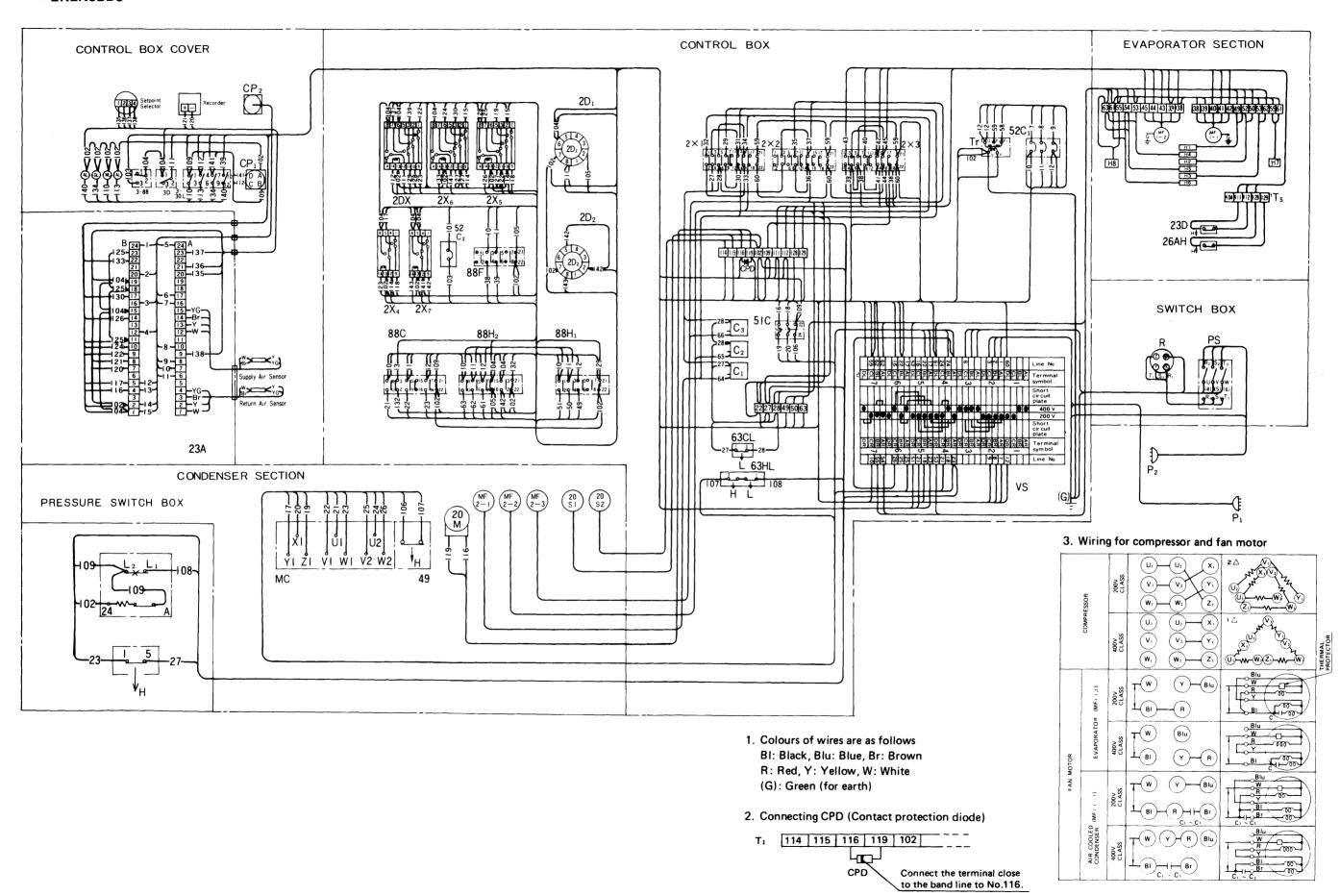
PS (PS)

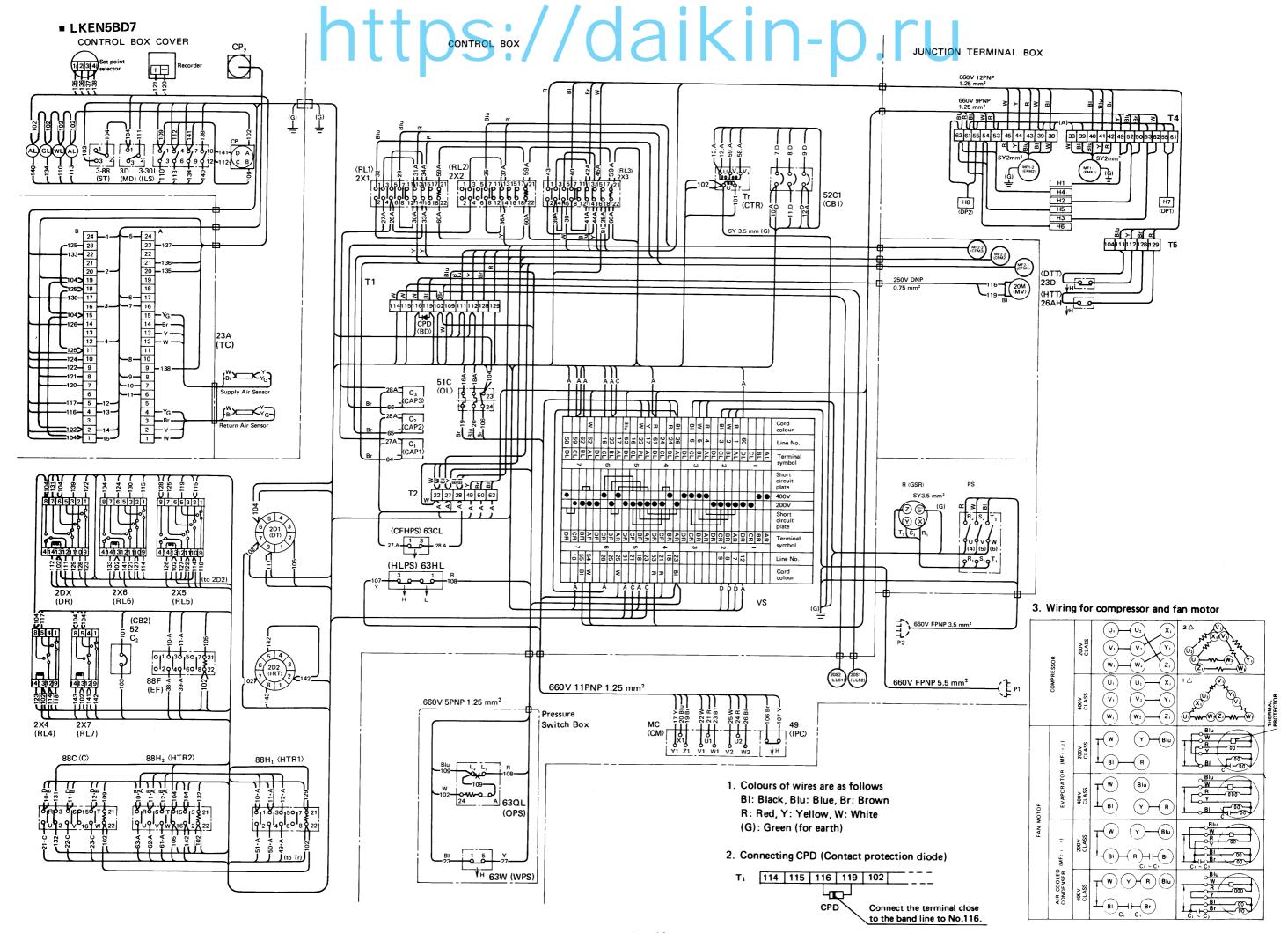
NOTES

1. Monitoring plug connected as follows.

A : Eart

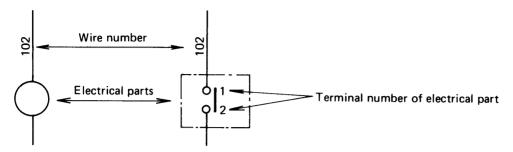
(D· · A)


B : Compressor (WL)


C: Defrost (AL)
D: In range temp. (GL)

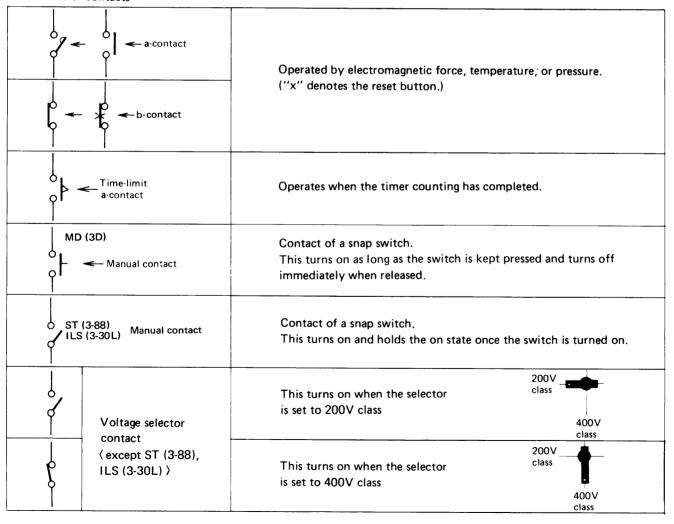
2. Broken line shows external wiring.

1.5.2 Actual wiring LKEN5BD3


https://daikin-p.ru

1.5.3 How to read wiring diagram

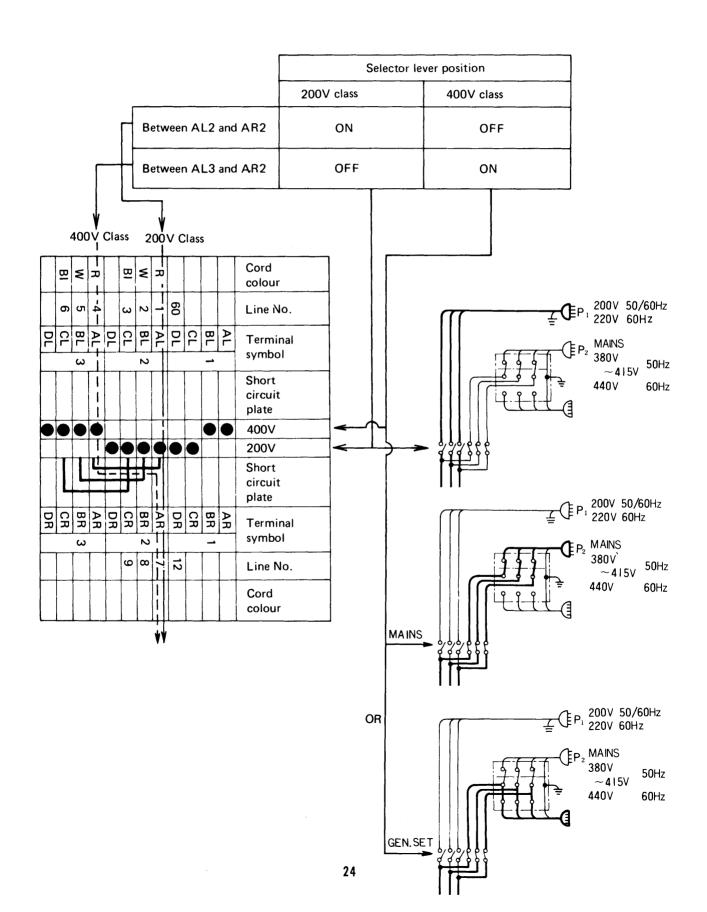
(1) In the wiring diagram, marks and numbers have the meanings given below.



(2) Operation of contacts

- a. The wiring diagram indicates the stationary state in which the circuits are not activated.
- b. When a coil is energized (supplied with power), the associated contact changes its position.

a-contact (nor	mal contact)	b-contact (reverse contact)		
Contact is OFF when coil is not energized	Contact is ON when coil is energized	Contact is ON when coil is not energized	Contact is OFF wher coil is energized	
Coil	Coil	Coil	Coil	

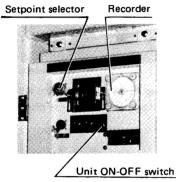

c. Kinds of contacts

d. How to read the wiring diagram of the voltage selector switch.

In the chart, "•" denotes that the contact is on.

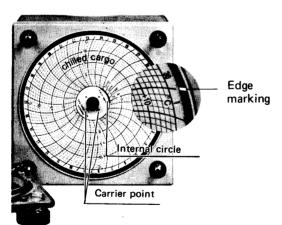
The following example shows the states between terminals AL2 and AR2, and between AL3 and AR2.

2. Operation

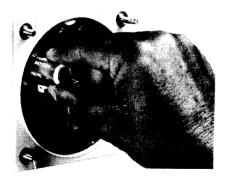

Operate the unit by the procedures given below.

- Preparation and operation
- Checking during operation
- Maintenance after operation

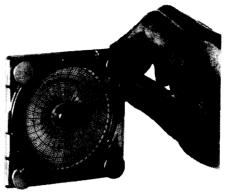
2.1 Preparation and operation


safety's sake.

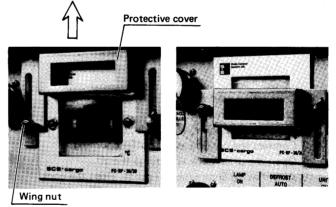
 Confirm that supply power is off.
 Confirm that the power source, the circuit breaker and unit ON-OFF switch are turned off before checking for



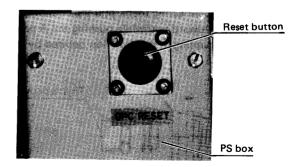
The cover of control box


- (2) Check operation of the recorder and replace the battery if necessary.
- Confirm that a circle is drawn right over the internal circle of the chart. (This is the same with the charts for "frozen" and "chilled" cargo.)
- If the battery is dead, replace it and record the date of replacement at the back of the recorder.

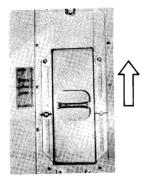
Confirm that internal circle is drawn



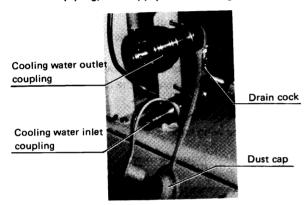
Install the battery with plus end first


Fasten the four knobs firmly

- (3) Replace the chart and set up a new one.
 - Replace a new chart according to the cargo.
 (Do not mistake the chart of frozen cargo for that of chilled cargo.)
 - Bring the date on the chart to the edge marking, then press it so that carrier point at the centre come out.
 - Fasten the front water-proof cover firmly.
- (4) Set the setpoint selector.
 - Lossen the wing nuts, then slide the protective cover upward.
 - Select a designated temperature by pressing the buttons arranged above and beneath the degital selector displays.
 - Return the protective cover to its original position and tighten the wing nuts.


Setting setpoint

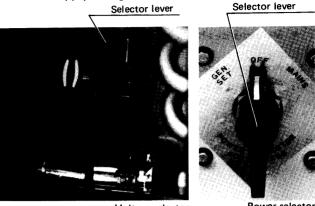
(5) Reset the oil pressure protection switch. Reset by pressing the button on the front panel of the PS (Pressure switch) box. The unit does not start unless the switch is reset.


(6) Open or close the ventilator.

Open or close the ventilator according to the cargo. (Be sure to keep it closed during transportation of frozen cargo.)

Ventilator

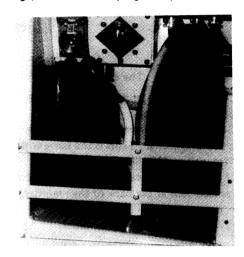
- (7) Connect the cooling water piping.
 - In the case of water-cooled operation, connect the water piping, and supply water through it.



- Connecting method
- 1. Close the drain cock.
- 2. Connect the cooling water inlet coupling.
- 3. Connect the cooling water outlet coupling.
- 4. Open the drain cock and purge the air.
- 5. After having completed air purge, close the cock.
- Disconnecting method
- 1. Disconnect the cooling water outlet coupling.
- 2. Disconnect the cooling water inlet coupling.
- 3. Open the cock and drain off.

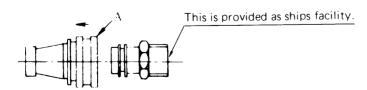
When the cooling water couplings are connected, insert the coupling on the ship side into the coupling on the unit side until a "click" is heard.

When disconnecting them, pull the coupling on the ship side toward you while pushing the A part of the female coupling in the direction pointed by an arrow mark.


- (8) Check that all refrigerant stop valves are opened.
- (9) Set the voltage selector and power selector according to the supply voltage.

Voltage selector

Power selector


(10) Plug in the power source which supplies the proper voltage, and fasten the plug firmly.

- (11) Turn on the power switch of the facility (outside the unit).
- (12) Turn ON the circuit breakers and unit ON-OFF switch.
- (13) Close the cover of the control box. If it is loose, water will escape. Check around the packing and tighten the cover securely.

Note: If the unit stops $2 \sim 3$ minutes after starting, the oil pressure protection switch in many cases has been activated.

> If this happens, depress the reset button a few minutes after the unit stops. If it stops again, repeat the same action.

Water connection at outlet side

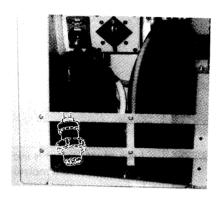
2.2 Checking during operation

Checking items (precautions)	Method of check
Check if unusual noise and vibration is produced from compressor, fan and piping etc.	Visual, sensuous and touching.
Check to ensure oil pressure protection switch functions, and the unit does not stop.	
3. Check suction and discharge pressures of the compressor. (For installation of a gauge, refer to "Section 9, page 59".)	Compare observed data with standard ones.
4. Check for proper oil level of compressor. Check to see the oil is clean. (Oil level may fall for a while after starting, but it rises gradually.)	Visual Oil level should be approx. ¼ to ¾ of its full scale.
5. Check to see if refrigerant is sufficient. (The refrigerant bubbles immediately after starting, but this does not mean that refrigerant is lacking.	Lack of refrigerant is indicated by bubbles in the moisture indicator.
6. Check if any moisture is present in refrigerant circuit. (The color of moisture indicator may turn to orange if it has been exposed to gaseous refrigerant for a long time, but this is no indication of trouble.)	Visual The moisture indicator should normally appear deep blue. Orange color is a sign of trouble
7. Check operating conditions with the pilot lamps and check instrument (Stäfa).	Visual

Visual

8. Check if the recorder operates according to the inside temperature.

2.3 Maintenance after operation

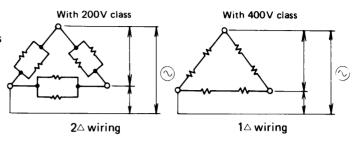

(1) Stopping

To stop the unit, perform defrosting operation with the manual defrost switch and immediately turn off the unit ON-OFF switch after the compressor has stopped, (stop the unit with "pump-down" state.) After pump down, turn off the circuit breakers.

(2) Stowing the power cable

Turn the plug's opening downward so that sea and rain

water cannot enter the plug when stowing it.

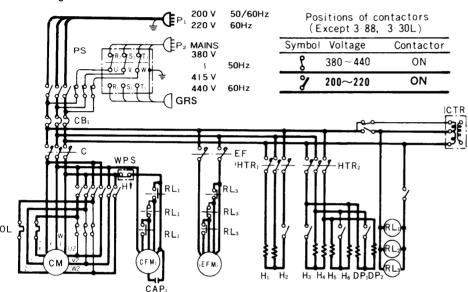


- (3) After water-cooled operation
 Remove the water piping, open cocks, and drain
 off.
- (4) Close the cover of the control box.

3. Operating modes and circuits

3.1 Voltage selection system (switching over 200V and 400V class)

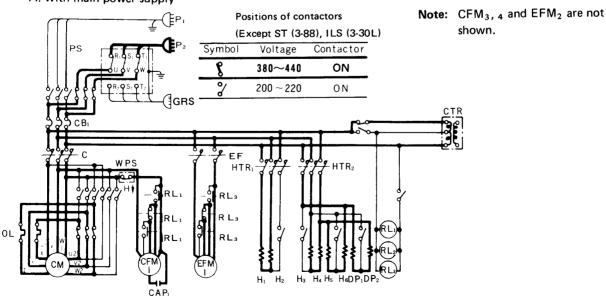
(1) This unit is adaptable to either of two supply voltages (dual rated voltage). Set the voltage selector (multicontact cam switch) according to the supply voltage by hand. The voltage selector changes wiring of the motors, electric heaters, and the transformer of the control circuits to supply the relevant voltage. For example, the internal wiring of the compressor is changed as follows.

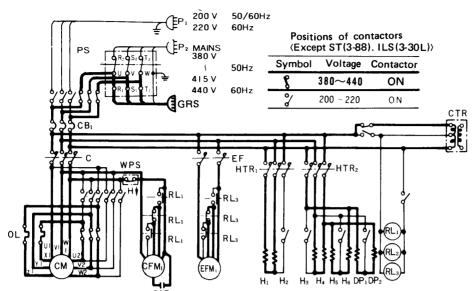


(2) Circuitry

• With 200V class (Set the selector lever to "200V CLASS".)

The contacts marked " '\$\forall \" in the sequence chart \(\) except ST (3-88), and ILS (3-30L \(\)) are turned on.


The circuits for 200V class will be set up with the contacts and the voltage selector relay \(\) RL_{1,2,3} (2X_{1,2,3}) are energized.

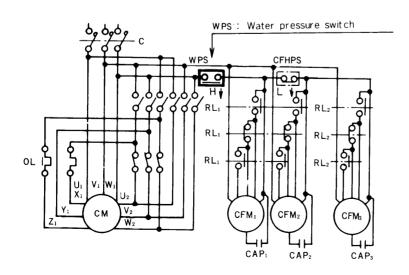

Note: CFM₃, ₄ and EFM₂ are not shown.

With 400V class (Set the selector lever to "400V CLASS".)
 The contacts marked " on the sequence diagram are turned on and the circuits for 400V class will be set up (RL₁, 2, 3, (2X₁, 2, 3) are off).

A. With main power supply

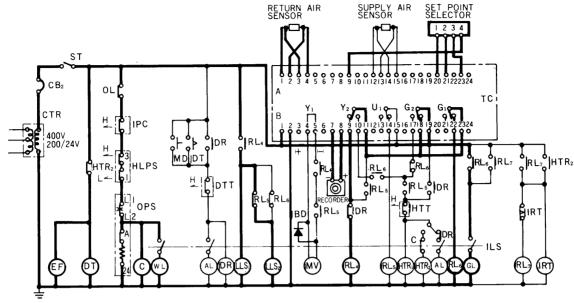
B. With GEN. SET power supply

Note: CFM_2 , and EFM_2 are not shown

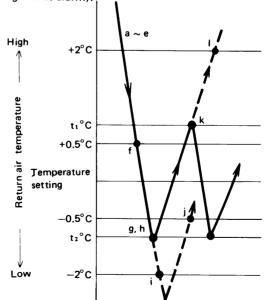

3.2 Air cooled and water cooled operation

The unit will operate on either air cooled or water cooled condenser operation.

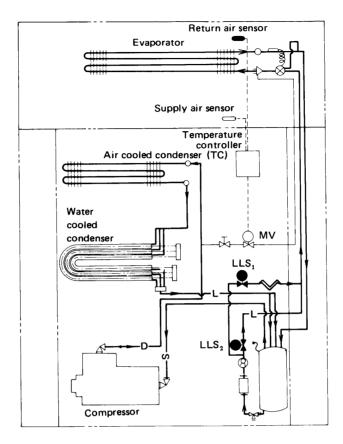
During transit on land, in depot or on a vessegs deck, the air cooled operation will function, and the operation in ship holds is normally water cooled.


The operation will be changed from air cooled to water cooled automatically by the water pressure switch; i.e. when water pressure at the inlet of the water cooled condenser rises higher than the presetting value, the contact points of the water pressure switch are opened, so the condenser fan motors stop, and the water cooled operation starts.

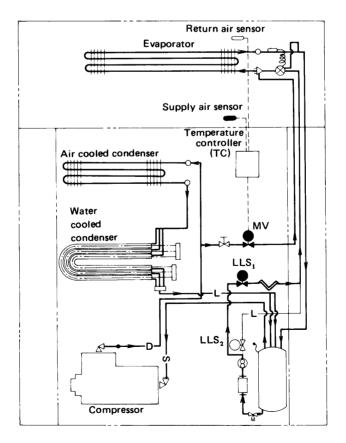
When the water supply is disconnected. The contacts of the water pressure switch are made and the condenser fan motors rotate.


This diagram indicates air-cooled operation mode. When water pressure is applied to the switch, the switch mechanism moves in the direction of H \downarrow , so the condenser fan motors <CFM $_1 \sim_3$ $(MF_{2-1} \sim_3)>$ stop, and water-cooled operation starts.

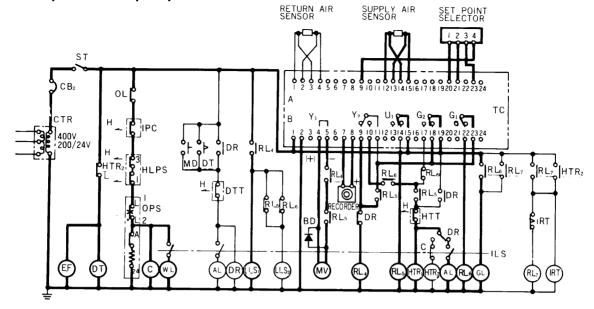
3.3 Frozen operation



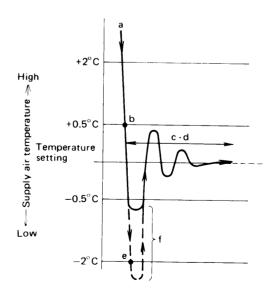
- Switching over frozen and chilled modes
 One of the modes will be automatically selected according to the setting of the setpoint selector.
- When the setting is above -6.5°C: chilled mode
- When the setting is below -7.0°C: frozen mode
- (2) During frozen mode, the compressor will be automatically turned on and off, sensing return air temperature to the evaporator.
- a. Turn on ST(3-88) (unit ON-OFF switch).
- b. With EF(88F) (evaporator fan relay) energized, EMF₁ (MF₁₋₁) and EFM₂ (MF₁₋₂) (evaporator fan motors) start.
- c. Solenoid valves <LLS₂ (20S₁) and LLS₁ (20S₂)> are open, with relay RL₄ (2X₄) energized by Y₂ relays (for compressor and heater) and G₂ (for low limit alarm) of TC(23A) (controller).
- d. When LLS₂ (20S₁) and LLS₁ (20S₂) are open, refrigerant flows and low pressure rises. As it reaches
 0.2 kg/cm², LP of HLPS(63HL) (dual pressure switch) are turned on.
- e. With LP on, C (88C) (compressor relay) gets energized. MC (compressor) and CFM_{1,2} (MF_{2-1,2}) and CMF₃ (MF₂₋₃) (air-cooled condenser fan motors) will start and WL (white lamp) will light up.——The unit enters in the normal operation and container inside temperature begins to fall.
- f. When return air temperature to the evaporator falls to 0.5°C above the preset temperature, (preset temperature plus 0.5°C), G_1 relay (high limit alarm) of TC(23A) is turned on and GL (green lamp) lights up by $G_2 \rightarrow G_1$ (indicating that inside temperature is with in range).
- g. When the temperature falls lower than the preset temperature, Y₂ relay is turned off <continuity between 9 and 11 of terminal B of TC (23A) is lost>; RL₄ (2x₄) becomes unenergized; LLS₂ (20S₁) and LLS₁ (20S₂) close; and "pump down" starts.
- h. When the low pressure falls down to 40 cmHgV, LP of HLPS (63HL) is turned off; C (88C) becomes unenergized; CM (MC), CFM_{1,2} (MF_{2-1,2}) and


- CFM₃ (MF_{2^{-3}}) etc. stop; and frozen operation stops.
- i If the temperature falls down to 2°C below the preset temperature after CM (MC) (compressor) has stopped, G₂ relay is turned off after a delay of approximately 20 seconds and GL goes out (low limit alarm).
- j When the temperature rises to the preset temperature minus 0.5°C, G₂ relay is turned on and GL lights up.
- k. When the temperature rises higher than the preset temperature. Y₂ relay is turned on and frozen operation starts by steps "c" through "e" described above.
- I. If the temperature rises further up to the preset temperature plus 2°C, G₁ relay is turned off after a delay of approximately 20 seconds and GL will go out (high limit alarm).

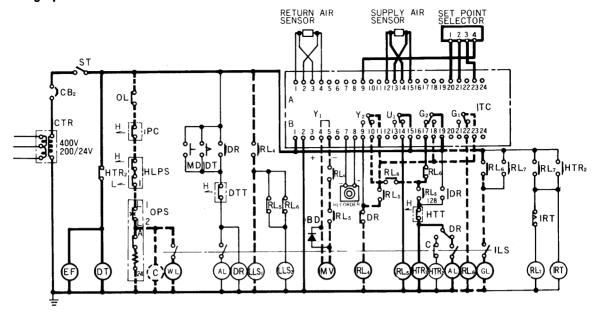
Note: t₁ and t₂°C (point of Y₂ relay function) are determined depending on temperature and time by means of P.I.D. (P: proportional action, I: integral action, D: derivative action) of the controller.



Flow of refrigerant during frozen operation


Flow of refrigerant during chilled operation

3.4 Chilled operation - capacity control

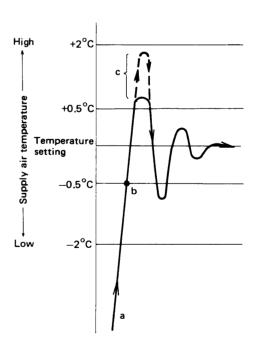


- (1) Chilled operation is performed when the preset temperature is -6.5° C or higher. U₁ relay (which switches over frozen and chilled modes) of TC (23A) is turned on, RL₅ (2X₅) relay becomes energized and the circuit of the chilled mode is made.
- (2) Chilled operation is controlled sensing supply air temperature from the evaporator; i.e., the modulating control valve <MV (20M)> controls the amount of hot gas to be bypassed continuously while a capillary tube controls the liquid refrigerant.
- a. The operation is the same with that (step "a" ~ "e") of the frozen mode while supply air temperature falls to the preset temperature plus 0.5°C from the pull down period.
- b. When the supply air temperature reaches the preset temperature plus $0.5^{\circ}C$, G_1 relay is turned on (GL lights), RL₆ (2X₆) relay gets energized, LLS₂ (20S₁) closes; and, the capillary tube controls the liquid refrigerant.
 - <LLS₂ (20S₁) remains closed after that.>
- c. As the supply air temperature rises to the preset value, Y₁ voltage rises slowly from zero, which opens the modulating control valve <MV (20M)> gradually, permitting hot gas to flow through.
- d. After the temperature has been reached the preset temperature, it takes about an hour for the unit to reach a steady state. <the opening of MV (20M) is nearly fixed; i.e., the flow of bypassing hot gas is nearly constant.> (This interval varies somewhat with the preset and ambient temperatures.) During this time, the valve changes its openings to control the flow of hot gas until the supply air temperature becomes stable.

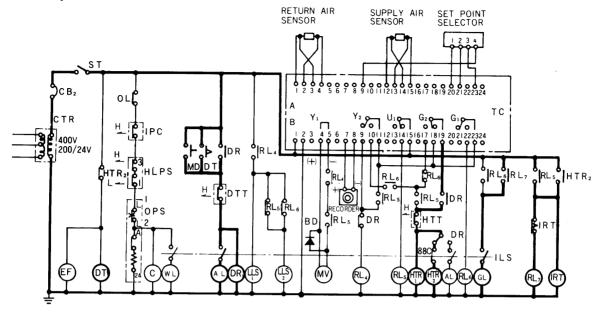
- e. Depending on operating conditions (such as when the differece between the ambient and preset temperature is small), G₂ relay is turned off and lamp GL goes out (after a delay of approximately 20 seconds) if the supply air temperature becomes -2°C lower than the preset temperature before stabilizing hot gas bypass volume (low limit alarm).
 - At the same time, RL_4 (2X₄) relay is turned off; LLS_1 (20S₂) and MV (20M) are closed, after "pump down", the compressor stops to prevent over-cool.
- f. If Y_2 relay has been turned off during step "e" above, the electric heaters (H_1 and H_2) may be turned on tentatively, but they will be turned off when the temperature rises.
 - (Refer to the section on Heating Operation for the details.)

3.5 Heating operation

- (1) Heating operation will be performed only when the preset temperature is -6.5°C or higher as in the chilled mode. Inside temperature will be controlled, sensing the supply air temperature.
- (2) There are three modes in the heating operation.
- Pull up Heated only by electric heaters
- Steady state Heated by hot gas bypass and electric heaters (when large heating capacity is needed)
 - Heated only by hot gas bypass (when small heating capacity is enough)

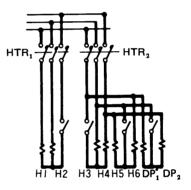

One of these three modes will be automatically selected according to load conditions.

- a. Pull up (The circuit indicated with bold lines in the sequence diagram functions)
 Until the supply air temperature rises to the preset temperature minus -0.5°C, G₂ relay is turned off, which unenergizes RL₆ (2X₆), energizes the heater relay
 <HTR₁ (88H₁)> and operates the electric heaters (H₁ and H₂). (compressor stops.)
- b. When the supply air temperature raises the preset temperature minus 0.5°C, G₂ relay is turned on and GL lamp light up. At the same time, RL₆ (2X₆) relay becomes energized,, so HTR₁ (88H₁) is energized by Y₂ relay. Since G₂ relay is on, RL₄ (2X₄) relay is energized, LLS₁ (20S₂) is open, and the compressor runs and heating starts with electric heaters and hot gas. (The circuit indicated by dotted lines in the sequence diagram functions.)

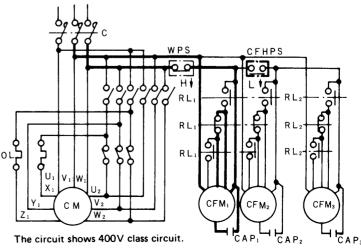

 Afterwards, operation will become stable as time

Afterwards, operation will become stable as time afterwards, elapses.

c. If heating load is small as stated in step "b", the inside temperature will rise: Y₂ relay is operated (the function point varies depending on PID operation): HTR₁ (88H₁) becomes unenergized: and the heaters (H₁ and H₂) are turned off, and heating operation only with hot gas bypass is performed. (The circuit is the same as that of chilled operation in the sequence diagram.)


3.6 Defrost operation

- Defrosting operation starts based on the following two conditions.
- Timer <DT (2D₁)> is turned on.
- Manual defrost switch <MD (3D)> is turned on.
 If one of those stated above is on, defrost
 relay <DR (2DX)> becomes energized, and AL
 (amber lamp) lights up.
- (2) When DR (2DX) is energized:
- Electric heaters H₁ and H₂ are operated with 88H₁ energized.
- LLS₂ (20S₁) and MV (20M) are closed with RL₄ (2X₄) relay unenergized.
 After "pump down", the compressor stops; HTR₂ (88H₂) becomes energized and electric heaters H_{3 ~6}, DP_{1 ,2} (H_{7 ,8}) are operated. <Now all electric heaters H_{1 ~6}, DP_{1 ,2} (H_{7 ,8}) are turned on.>
- (3) With HTR₂ (88H₂) energized, the evaporator fan stops and defrosting operation starts.
- (4) When the evaporator coil temperature rises to 7.2°C after having removed frost, defrost termination thermostat <DTT (23D)> is turned off and DR (2DX) becomes unenergized. Defrosting operation is completed.


3.7 High pressure control

(1) The condensing pressure (high pressure) falls when the ambient temperature falls during air-cooled operation, and the lower pressure also falls accordingly. If operation is still continued in this condition, the low pressure switch will be turned off <LP of HLPS (63HL) is turned off> and the compressor will stop so that the required refrigeration capacity is not available. To prevent the high pressure from falling, a pressure switch <CFHPS (63CL)> (which controls the high pressure) stops two condenser fans CFM2,3 (MF2-2 and 2-3) automatically when the high pressure falls to 7 kg/cm² (99.6 psi).

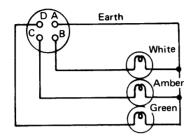
The circuit shows 200V class circuit

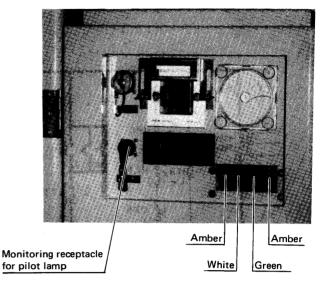
(5) The inrange lamp (GL) lights up, indicating that inside temperature is appropriate for 90 minutes (50Hz) from initiation of defrost by the inrange timer <IRT (2D₂)>

3.8 Pilot lamps and monitoring circuit

(1) Three lamps which indicate operating mode are mounted on the front panel of the control box.

Amber: indicates defrosting mode


White: indicates that the compressor is running


Green: indicates that inside temperature is with in

range (within +/-2°C of the preset

temperature)

Receptacles for monitoring pilot lamp is also equipped and its connections is shown at below.

(2) How to judge operation state by pilot lamps and function of the components.

		Set point selector set above -6.5°C (+20.3°F)					
		-Air cooled operation					
	Part name	Coo	Cooling		Heating		
		Pull down	In range	Pull up	In range	Defrost	
	Defrost -Amber	×	X	X	X	0	
Light	CompWhite	0	0	X	0	X	
Light	In range —Green	×	0	X	0	* 0	
	Heating -Amber	×	X	0	0	Х	
	Comp. cond. fan motor	0	0	×	0	X	
Magnetic	Evaporator fan motor	0	0	0	0	Х	
switch	Heater <htr<sub>1 (88H₁)</htr<sub>	X	X	0	0	0	
	Heater <htr<sub>2 (88H₂)</htr<sub>	×	X	X	X	0	
Solenoid valve <lls<sub>2 (20S₁)></lls<sub>		0	X	X	×	Х	
Solenoid valve <lls<sub>1 (20S₂)></lls<sub>		0	0	×	0	X	
Modulating	Modulating valve <mv (20m)=""></mv>		0	X	0	Х	
Compressor		0	0	×	0	×	

		1	elector set b — Air cool			
	Part name		Cooling		Water cooled operation	
			In range	Defrost		
	Defrost -Amber	X	X	0		
Light	CompWhite	0	0	X	Water cooled condition is	
Ligitt	In range —Green	X	0	* 0	the same as air cooled except	
	Heating -Amber	X	X	X	Water press, switch	
	Comp. cond. fan motor	0	0	X	<wps (63w)=""> open</wps>	
Magnetic	Evaporator fan motor	0	0	Х	Condenser fan motor	
switch	Heater (88H1)	Х	X	0	<cfm (mf<sub="">2)> de-energized</cfm>	
	Heater (88H2)	Х	X	0		
Solenoid va	alve (20S1)	0	0	×		
Solenoid va	alve (20S2)	0	0	×		
Modulating	valve (20M)	X	X	X		
Compresso	r	0	0	×		

Notes 1. \bigcirc : Energized or ON, X: De-energized or OFF

 Inrange light remains, energized for 90 minutes from initiation of defrost.

4. Major components and maintenance

4.1 Components related with refrigeration circuit

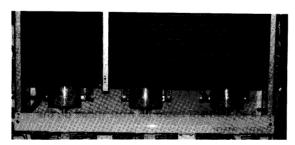
4.1.1 Compressor

The compressor is of a semi-hermetic type with built-in motor so that there are few places where leakage of refrigerant may occur. The reversible lubricating ail pump used produces the required oil pressure regardless of the direction of rotation of the built-in motor.

(a) Replacement

Remove the compressor by the following procedure.

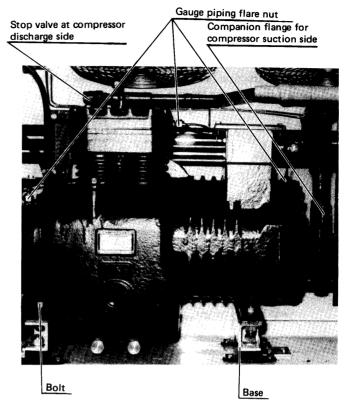
- 1 Remove the front and base plates and protective bar of the cable stowage.
- 2 Remove the discharge stop valve, suction stop valve gauge piping flare nut (compressor side) and cable.
- 3 Remove four bolts (two on each side) fastening the compressor and base.
- 4 Take out the compressor to the front of the unit.


Install the compressor according to reverse procedure given above. When tightening the bolts, refer to the torque values listed.

4.1.2 Air-cooled condenser and evaporator

The "cross fin" coil has special corrugated fins. They are compact and very efficient in producing uniform heat exchange efficiency.

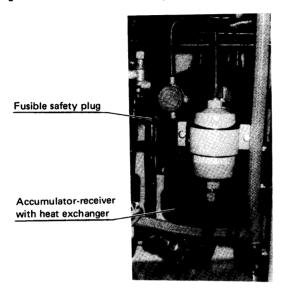
(a) Maintenance


Service the air-cooled condenser after removing the air suction grille. Service the evaporator after removing the air return grille or the access panels from outside.

Air cooled condenser

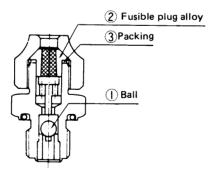
4.1.3 Water-cooled condenser

Of the tube-in-tube type in which cooling water flows in the inner tube while the refrigerant flows between the outside wall and the wall of the inner tube. Since special fins are fitted, the condenser is compact and light.



Evaporator

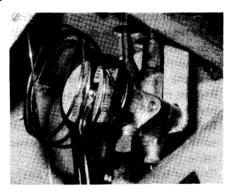
4.1.4 Accumulator-receiver with heat exchanger


Consists of the accumulator, receiver, and heat exchanger, which are encased in a vertical cylindrical construction; i.e. the heat exchanger passes through the accumulator from its top to the bottom and reaches to the receiver.

This construction reduces heat loss. A fusible safety plug is fitted to the receiver body.

(a) Replacement procedure of the fusible safety plug

When pressure rises abnormally in the system, the fusible safety plug melts itself, so if the fusible safety plug is melted, check possible causes thoroughly. When fusible safety plug functions, the centre of the fusible safety plug alloy ② melts, from which the refrigerant escapes. When the flare nut is removed, ① (ball) will come out under pressure and block the passage of the refrigerant outlet, which prevents the refrigerant from escaping and also the air from entering. Thus, refrigerant loss is extremely minimized.



Construction of fusible safety plug

Insert a new 2 by means of 3, and tighten the flare nut.

4.1.5 Expansion valve

The externally equalized expansion valve which is fitted before the evaporator and senses over-heat degree of leaving evaporator refrigerant and controls flow of the refrigerant automatically according to operating conditions. The expansion valve with MOP (motor overload protection) is adopted to protect the compressor motor from overload.

"CAUTION" Whenever adjusting and replacing the expansion valve, the unit should be isolated from the mains supply for safety.

(a) Adjusting the expansion valve

There are two methods to adjust the expansion valve; i.e. one is the adjustment based on the suction operation standard and the other is that based on the frost conditions on the compressor.

- (1) Adjustment based on the suction operation pressure
 - 1) Conform that the predesigned volume of the refrigerant has been charged.
- 2) Attach a pressure gauge to each gauge port and operate the refrigeration unit, maintaining inside temperature at -18°C (-0.4°F). (See connecting of pressure gauge).
- 3) When inside temperature comes to the preset temperature, compare the suction pressure reading with the standard pressure. (See Standard operation pressure curve)
- 4) If suction pressure reading differs with the standard pressure, adjust the expansion valve as stated below.
- After loosening the clamp screw, turn the adjusting screw.
- 6) Note that pressure will not change after a certain lapse of time.
- (2) The adjustment based on frost stated on the compressor.
 - 1) Refer to the caution for adjustment of expansion valve as above. At this time, inside temperature should be maintained to -18°C (-0.4°F).
 - 2) Regulate the adjusting screw as stated below based on frost state on the suction pipe and the stop valve of the compressor.
 - Whether or not the adjustment required is judged by frost state of the flange on the suction side of the suction valve.
 - 4) However note that frost state differs with ambient air conditions (temperature and humidity).

Adjusting points for expansion valve

Adjusting screw	Turning direction		Operation state		
Adjusting screw of	Clockwise		Suction pressure is higher than the standard pressure (Frost forms on the suction pipe rather than the suction flange of the stop valve). Clockwise rotation of the adjusting screw decreases running pressure.		
expansion valve	Counter- clockwise		Suction pressure is lower than the standard pressure (frost forms on the compressor side rather than the suction flange of the stop valve). Counterclockwise rotation of the adjusting screw increases running pressure.		

(3) Countermeasures after operation

- Remember the original setting of the expansion valve.
 If any change is found with the setting after
 adjustment of the expansion valve, return the adjusting
 screw to the original position, as trouble occured
 caused by other reasons.
- 2) When the adjusting screw is returned to its original position, firstly turn it passing the original position and then return it to the original position.
- After adjustment, be sure to tighten up the clamp screw and cap it to prevent the refrigerant from leaking.
- 4) After completion of the adjustment, operate the unit, keeping inside temperature at -18°C (-0.4°F) and confirm that low pressure does not go down below 0 kg/cm²G (0 PSIG).

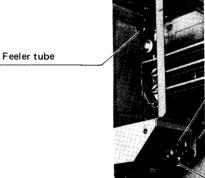
(b) Replacement

For replacement of the expansion valve, remove the access panel located on the front of the unit or by removing the evaporator bulkhead inside the container, and the drain pan back plate located at the left side.

- Remove the feeler tube, equalizing pipe flare, and fastening bolts. (To replace the cage alone, there is no need to remove the feeler tube.)
- 2) Remove the power assembly, cage, and packing.
- 3) Be sure to install a new packing when replacing it.

4.1.6 Liquid/moisture indicator

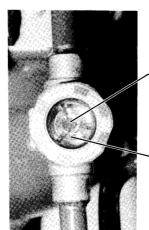
This indicator permits checking of flow of the refrigerant and moisture content in the refrigerant.


(a) Moisture content

The indicator indicates moisture content by the color at the center of the window.

Color	State
Deep blue	Dry
Orange	Wet (moisture contained)

Note: The indicator may appear orange if it has been exposed to gaseous refrigerant for a long time.



Equalizing pipe flare

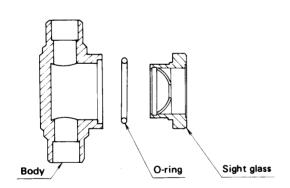
Fastening bolt

Adjusting screw

Moisture indicator

Corrugated

(b) Flow of the refrigerant

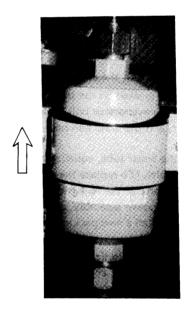

- When the liquid refrigerant is sealed, bubbles on the sight glass disappear.
- Check

Operation	Indicator state
At start	Bubbles appear but liquid refrigerant is sealed in 30 minutes to an hour after starting.
During operation	Bubbles may appear more or less.

If bubbles develop continuously, the refrigerant is possibly running short.

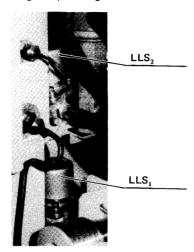
(c) Replacement

- 1) Put the system in "pump down" state.
- 2) Turn the sight glass counterclockwise, and remove it together with the O-ring.
- Apply refrigeration oil to the new O-ring, and fasten the sight glass with torque of 70 ±5 kg-cm.
 (Do not apply excessive torque, or the O-ring will break.)


4.1.7 Dryer

This removes moisture and dust from the refrigerant while it is circulated. Replace the dryer if it does not remove moisture or is clogged.

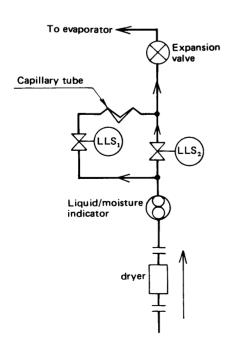
When installing the new dryer, follow the directions given on the nameplate and do not make any mistake about the direction of the dryer.


(a) Replacement

- 1) In "pump down" state (see Service), close the compressor suction stop valve.
- 2) Then, loosen the flares in front of and behind the dryer and replace the dryer quickly.
- 3) Be careful not to get, air into the piping on the solenoid valve side while removing the dryer.
- 4) After reattachment of the dryer, open the stop valve a little to vent the air in the dryer from the flare on the solenoid valve side and then close it at once.
- 5) Loosen the flare on the other side, forcedly turn off the low pressure of the dual pressure switch, turn on the master control switch and open the solenoid valve only to vent the air.
- 6) After completion of the work, restore the stop valve to its original state and then inspect the system for gas leakage. Confirm no gas leakage is found.

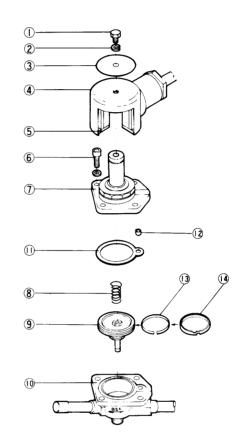
4.1.8 Solenoid valves

There are two solenoid valves <LLS $_2$ (20S $_1$) and LLS $_1$ (20S $_2$)> in the liquid line. They operate as follows according to operating mode.


(a) During frozen mode

Both LLS₂ ($20S_1$) and LLS₁ ($20S_2$) are open during operation.

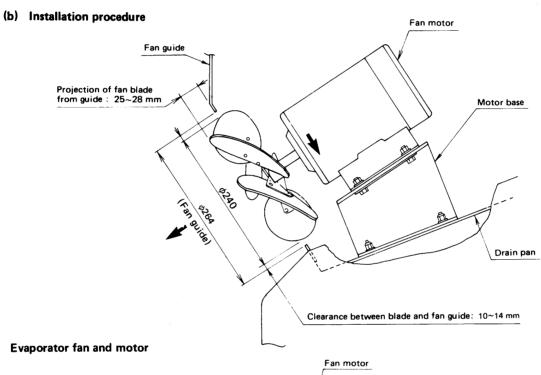
When stopping the compressor by the controller, they are closed and stop flow of the refrigerant, performing "pump down".

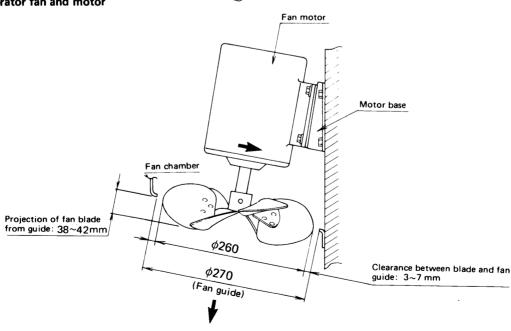

(b) During chilled mode

The two valves are open during "pull down". When the supply air temperature falls to the preset temperature plus 0.5° C, LLS_2 ($20S_1$) alone is closed by directions of the controller. The refrigerant then flows through the capillary tube via LLS_1 ($20S_2$) (liquid control). Both LLS_2 ($20S_1$) and LLS_1 ($20S_2$) are open when the solenoid is energized and closed when not energized.

(c) Disassembly

- The structure of the solenoid valve is shown at below.
 (For disassembly, checking, and reassembly, refer to this diagram.)
- When brazing a pipe to the valve, cool the valve body with a wet cloth. (It is not required to disassemble the valve. Remove the coil ass'y from the body.)
- During reassembly, tighten the four bolts x4 with torque of 70-80 kg-cm.

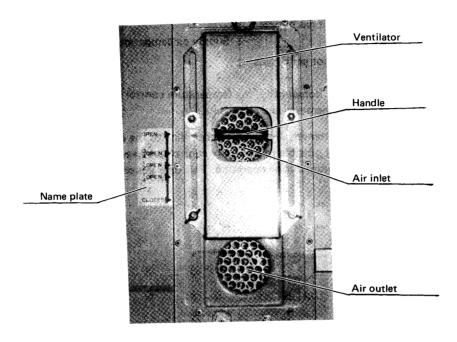

No.	Parts name
1	Set bolt
2	Spring lock washer
3	Name plate
4	Coil ass'y
(5)	Retaining plate
6	Set bolt
1	Cover ass'y
8	Spring
9	Piston
(0)	Valve body
(1)	Packing
(12)	Sleeve
(3)	Inner ring
(14)	Piston ring


4.2. Components related with the air system

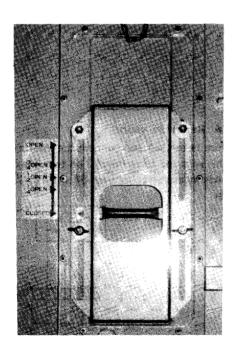
4.2.1 Fans and motors

(a) Specifications

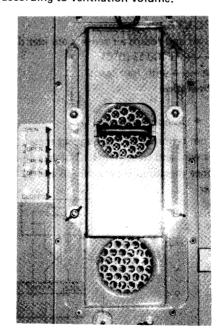
		Evaporator	Condenser	
	Ту́ре	propeller fan	propeller fan	
Fan	Number of blades	6 pcs.	6 pcs.	
	Blade diameter	φ240	φ260	
	Туре	Single-phase, squirrel-cage induction motor		
Motor	Motor output (number of poles)	465W (2P)	60W (4P)	
MOTOL	Capacitor	Built-in	Separate	
	Bearing	Ball bearing, 6203 contactless type, rubber shiel		



Condenser fan and motor


4.2.2 Ventilator

(a) View



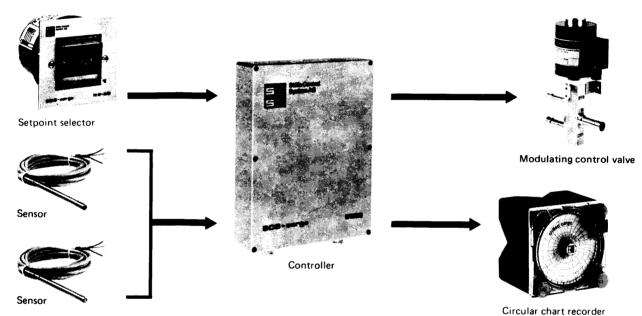
(b) Operation

 If ventilation is not needed: Set the handle to CLOSED.

If ventilation is needed:
 The ventilation opening may be varied over four steps:
 1/4, 1/2, 3/4 and 1. Adjust the opening according to ventilation volume.

4.3 Temperature control system

This unit performs temperature control in three modes.


- I Frozen operation: compressor on-off control: Return air temperature is controlled (return air sensor).
- II Chilled-operation: capacity control by hot gas bypass

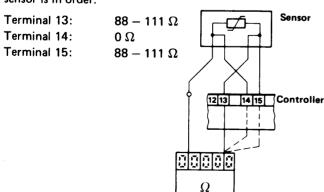
Supply air temperature is controlled (supply air sensor).

III Heating operation: capacity control by hot gas bypass and electric heater control.

Selecting one of these operating modes automatically, the temperature control system controls the inside temperature according to the preset temperature and records it.

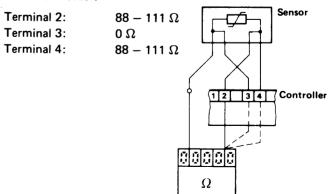
- The supply and return sensors will be automatically switched according to the preset temperature.
- Adoption of a check instrument makes it possible to know the control state easily.
- The recorder records controlled temperature during operation. This operates continuously for about a year with a single battery.

4.3.1 Sensor FC-KTRP


The supply air and return air sensors are identical.

- Element --- PT100 Ω (0°C)
- Connection --- with four leads

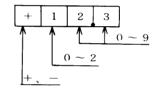
(a) Checking operation


Supply air sensor

Remove wire from terminal 12 and connect measuring instrument to this wire and to terminal 13 of terminal block A. If the resistance measured is between 88 and 111 Ω , the sensor is in order.

Return air sensor

Remove wire from terminal 1 and connect the measuring instrument to this wire and to terminal 2 on terminal block A. If the resistance measured is between 88 and 111 Ω the sensor is in order.


• Temperature vs. resistance table

Temperature °C	Resistance Ω	Temperature °C	Resistance Ω	Temperature °C	Resistance Ω	Temperature °C	Resistance Ω
-30	88.17	– 9	96.46	5	101.95	18	107.02
–25	90.15	- 8	96.86	6	102.34	19	107.40
–20	92.13	- 7	97.25	7	102.73	20	107.79
–19	92.52	- 6	97.65	8	103.12	21	108.18
-18	92.92	- 5	98.04	9	103.51	22	108.57
–17	93.31	- 4	98.43	10	103.90	23	108.96
–16	93.71	- 3	98.82	11	104.29	24	109.35
–15	94.10	- 2	99.22	12	104.68	25	109.73
14	94.49	- 1	99.61	13	105.07	26	110.12
–13	94.89	0	100.00	14	105.46	27	110.51
-12	95.28	1	100.39	15	105.85	28	110.90
-11	95.68	. 2	100.78	16	106.24	29	111.28
–10	96.07	3	101.17	17	106.63	30	111.67
		4	101.56				

4.3.2 Setpoint selector PC-RP30/30

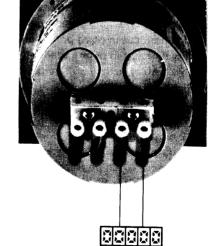
Temperature setting is of digital indication. Press the buttons arranged both upper and lower of each indication for setting.

Temperature range $-29.9 \sim +29.9^{\circ}$ C

a. Operating check

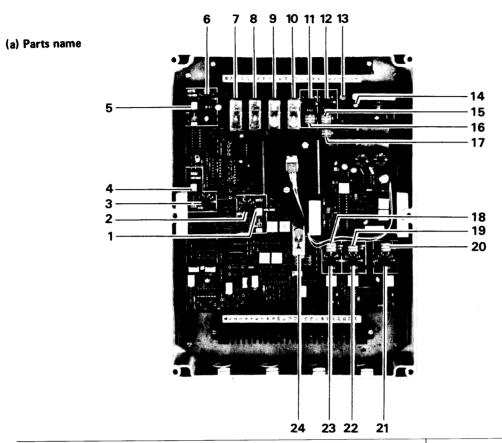
- 1. Switch on controller (Unit ON-OFF switch)
- 2. Measure $-15 \text{ V DC} \pm 0.5 \text{ V}$, terminal 3 (\bot) -1
- 3. Measure +15 V DC \pm 0.5 V, terminal 3 (\bot) -2

If the measured values agree, the voltage supplied to the setpoint selector is correct.


Terminal 3 (≯) -4

4. Setpoint adjustment

$$-29.9$$
 °C = 0.017 V


+29.9 °C = 9.983 V

Tolerance ± 0.017 V

4.3.3 Controller RFC-92GS

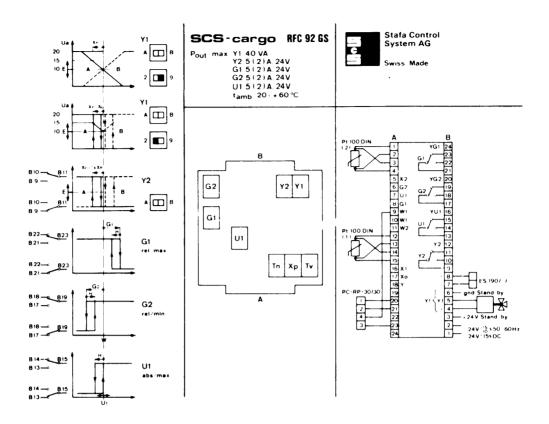
According to the preset temperature, one of two sensors (supply or return) is selected to control the modulating control valve, compressor, and electric heaters and gives alarm at high and low limits of the inside temperature. In addition, according to controlled temperature, output is delivered to the recorder.

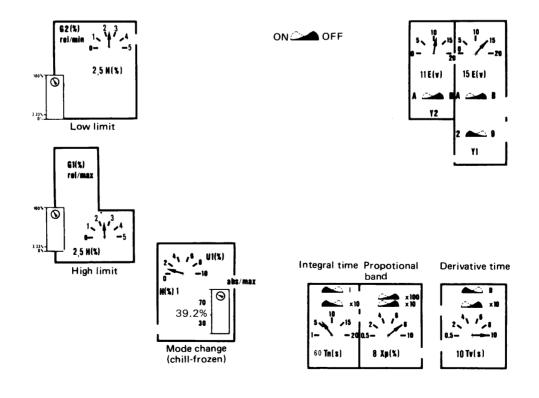
Item	Description		Factory setting
1	Operating mode change-over cut-in point potentiometer	U1	39.2 % (-6.5°C)
2	Operating mode change-over switching differential potentiometer	Н	1 % (0.6 K)
3	High limit switching differential potentiometer	Н	2.5 % (1.5 K)
4	High limit cut-in point potentiometer	G1	3.33 % (+2°C)
5	Low limit cut-in point potentiometer	G2	3.33 % (-2°C)
6	Low limit switching differential potentiometer	Н	2.5 % (1.5 K)
7	High limit relay	G1	
8	Low limit relay	G2	
9	Mode change-over relay	U1	
10	Y2 output relay	Y2	
11	Y2 output cut-in point potentiometer	E	11 V
12	Y1 output cut-in point potentiometer (modulating)	E	15 V
13	Spare transistor fuse	BC 107	
14	Transistor fuse		
15	A/B direction of operation change-over switch	Y1	Α
16	A/B direction of operation change-over switch	Y2	Α
17	2/9 operation change-over switch*	Y1	9
18	Integral action tens selector dial	I x 10	I x 10
19	Proportional band tens selector dial	xp x 10	out
20	Derivative action and tens selector dial	x 100	out
21	Derivative action preset time potentiometer	D x 10	D
22	Proportional band potentiometer (% of measuring range)	T _V [s]	10
23	Integral action reset time potentiometer	xp [%]	8
24	Recorder output change-over relay	Tn [s]	6

^{*2 (}on/off), 9 (modulating)

(b) Temperature-voltage conversion table

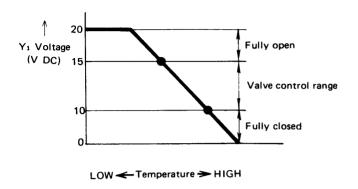
The temperature on the right and preset temperature can be converted to voltage with the terminal board of the controller or the receptacle of the checker.

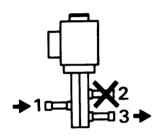

- Examples: 1. Supply air temperature (X1) is 0°C when voltage is 5V across A24-A16 of the terminal board (F-H of the receptacle).
 - 2. The change-over point (U1) between chilled and frozen modes are switched over is -6.5° C when voltage is 3.9166V across A24-A7 of the terminal board (F-L of the receptacle).


Description		
Supply air temp. X 1	Н	A16
Return air temp. X 2	G	A17
Setpoint w1	J	A10
High limit G1	K	A8 — 7 1
Low limit G2	M	A6 —
Change-over U1		1
Chilled/Frozen	L	A7 👍
Earth 🕹	F	A24

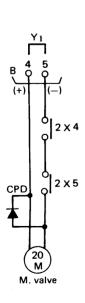
Temperature/voltage conversion table

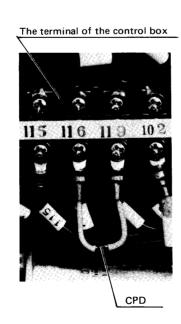
°C	V	°C	V	°c	V
-30	0	-10.0	3.3333	10.0	6.6666
-29.5	0.0833	- 9.5	3.4166	10.5	6.750
-29	0.1666	- 9	3.5	11	6.8333
-28.5	0.250	- 8.5	3.5833	11.5	6.9166
-28	0.3333	- 8	3.6666	12	7.0
-27.5	0.4166	- 7.5	3.750	12.5	7.0833
-27	0.5	- 7	3.8333	13	7.1666
-26.5	0.5833	- 6.5	3.9166	13.5	7.25
-26	0.6666	- 6	4.0	14	7.3333
-25.5	0.750	- 5.5	4.0833	14.5	7.4166
-25	0.8333	- 5	4.1666	15	7.5
-24.5	0.9166	- 4.5	4.25	15.5	7.5833
-24	1.0	- 4	4.3333	16	7.6666
-23.5	1.0833	- 3.5	4.4166	16.5	7.75
-23	1.1666	- 3	4.5	17	7.8333
-22.5	1.25	- 2.5	4.5833	17.5	7.9166
-22	1.3333	- 2	4.6666	18	8.0
-21.5	1.4166	- 1.5	4.750	18.5	8.0833
–21	1.50	- 1	4.8333	19	8.1666
-20.5	1.5833	- 0.5	4.9166	19.5	8.25
-20	1.6666	± 0	5.0	20	8.3333
_19.5	1.750	0.5	5.0833	20.5	8.4166
_19	1.8333	1	5.1666	21	8.5
18.5	1.9166	1.5	5.25	21.5	8.5833
–18	2.0	2	5.3333	22	8.6666
-17.5	2.0833	2.5	5.4166	22.5	8.750
–17	2.1666	3	5.5	23	8.8333
-16.5	2.25	3.5	5.5833	23.5	8.9166
16	2.3333	4	5.6666	24	9.0
-15.5	2.4166	4.5	5.75	24.5	9.0833
–15	2.5	5	5.8333	25	9.1666
-14.5	2.5833	5.5	5.9166	25.5	9.25
-14	2.6666	6	6.0	26	9.3333
-13.5	2.750	6.5	6.0833	26.5	9.4166
-13	2.8333	7	6.1666	27	9.5
-12.5	2.9166	7.5	6.25	27.5	9.5833
12	3.0	8	6.3333	28	9.6666
-11.5	3.0833	8.5	6.4166	28.5	9.75
-11	3.1666	9	6.5	29	9.8333
-10.5	3.25	9.5	6.5833	29.5	9.9166
				30	10.0


for temperature sensor output X1, X2 setpoint switch output w1, settings G1, G2, U1. $U/^{\circ}C = \frac{10[V]}{60[^{\circ}C]} = 0.16667 \text{ V/}^{\circ}C$


4.3.4 Modulating control valve M3F15L

Output (Voltage Y_1) of the controller drives this valve. As a two-way valve, this controls the flow of hot gas bypass continuously. The valve opening may be read from voltage Y_1 with a checker.


(a) Valve position


- De-energized period: 1—3 closed
- The coil resistance of the valve is approximately 20 Ω at 21°C

(b) CPD (contact protective diode)

A CPD is inserted in the valve circuit. This protects the relay contacts from surge current which flows when the circuit is opened and closed. The CPD is fitted to the terminal of the control box.

4.3.5 Recorder ES190/30

With output of the controller, this records return air temperature during frozen mode, and supply air temperature during chilled and heating modes automatically.

A battery is used as its power source and is capable of continuous operation approximately for a year. Be sure to change chart papers in accordance with operation modes.

Recording range — while frozen operation:

-25°C~-6.5°C

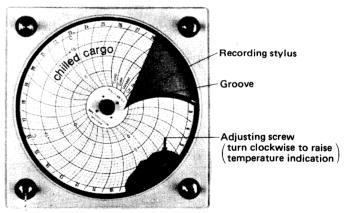
while chilled and heating operation: -6.5°C~+15°C

Power source — Lithium battery IEC R6"AA"

3.4V

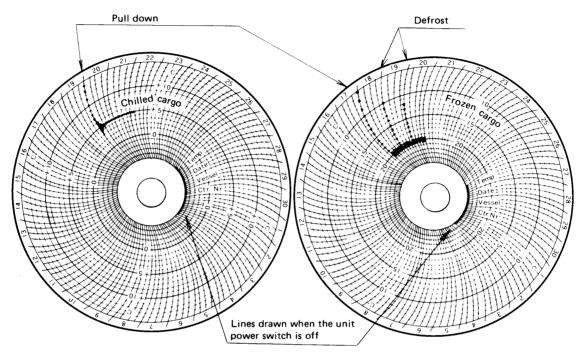
Record — One dot/5 minutes from the

backside of chart paper.


- 1 round/30 days.

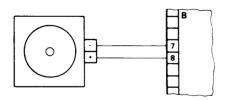
(a) Adjustment

The measuring system must not be energized during calibration.


Turn the calibrating screw with a screw driver until the recorder needle is exactly level with the innermost scale ring. Turn the central axis anticlockwise until the recorder slot is covered.

Mount the recorder cover and wait until the measuring system is activated (audible impact of recorder needle). The dot produced must lie exactly on the innermost circle line. If there is any deviation, further adjustment is necessary.

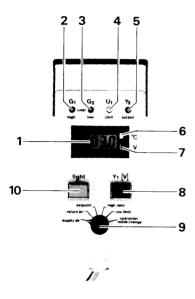
(b) Examples of recording


Recording of the recorder is made by one dot per 5 minutes. Recording while temperature fluctuation is repid such as pull down or defrost becomes a dotted line as shown in the figure below.

(Chilled operation: Setting +5°C)

(Frozen operation: Setting -20°C)

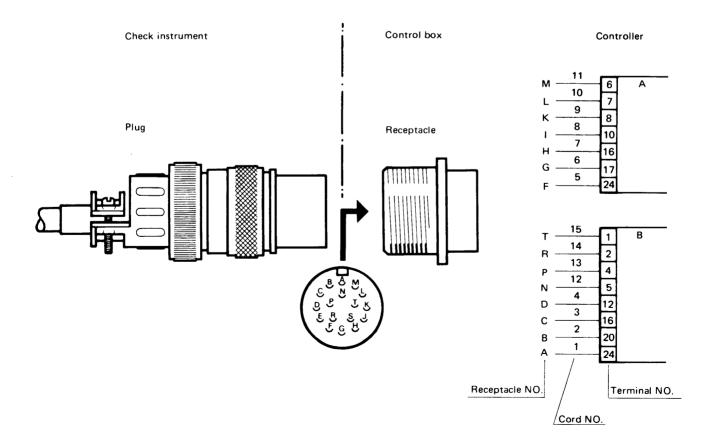
(c) Temperature recorded and controller output (voltage)


Conversion table °C/V DC

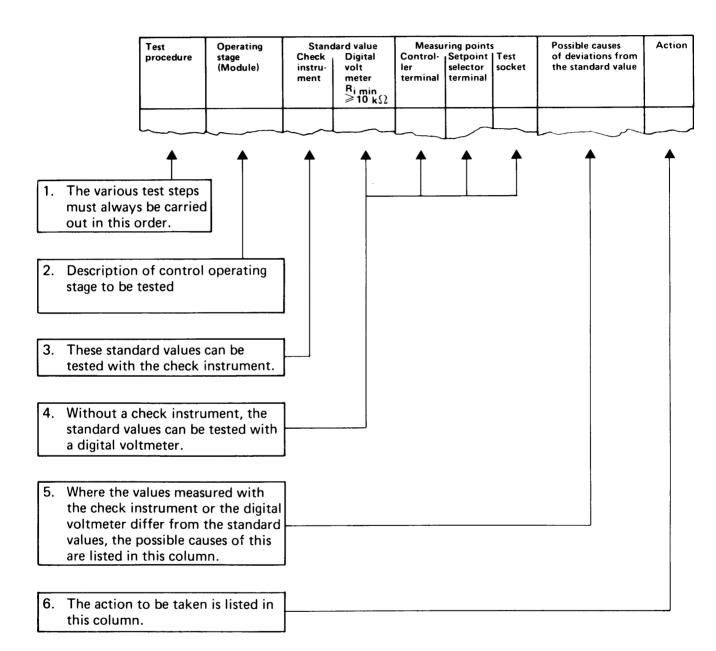
Return a	ir	Supply air	
°C	V	°C	V
-25	0	- 5	0
-24	0.5	- 4	0.5
-23	1	- 3	1
-22	1.5	- 2	1.5
-21	2	- 1	2
-20 ·	2.5	0	2.5
-19	3	+ 1	3
-18	3.5	+ 2	3.5
-17	4	+ 3	4
-16	4.5	+ 4	4.5
-15	5	+ 5	5
-14	5.5	+ 6	5.5
-13	6	+ 7	6
-12	6.5	+ 8	6.5
-11	7	+ 9	7
-10	7.5	+ 10	7.5
- 9	8	+ 11	8
- 8	8.5	+ 12	8.5
- 7	9	+ 13	9
- 6	9.5	+ 14	9.5
5	10	+ 15	10

4.3.6 Check instrument

Connect the plug of the check instrument to the receptacle on the front panel of the control box, and check the following, operating the unit.


Note: When the check instrument is used do not subject it to direct sun light. Further, each inspection and adjustment should be done after $10 \sim 20$ minutes energization.

- 1 Liquid crystal indication
- 2 Alarm temperature too high -- G₁
- 3 Alarm temperature too low -- G₂
- 4 Chilled operation ---- U₁
- 5 Electrical heating "on" with chilled operation compressor "stop" with frozen operation
- 6 Lamp for temperature indication -- °C
- 7 Lamp for voltage indication),
- 8 Modulating valve voltage button V (Y1
- 9 Selector for:
 - Setting upper limit
 - Setting lower limit
 - Setting operating mode change-over point
 - Supply air temperature
 - Return air temperature
 - Setpoint


10 Scale illumination button

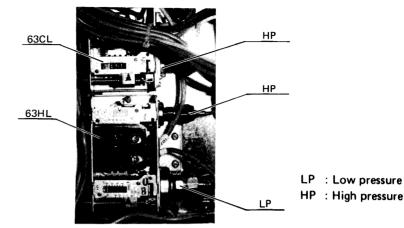
Note: $2 \sim 5$ signify the state when the lamp lights up

4.3.7 Checking operation of the controlling devices

Note: Before checking, operate the compressor for 10

Test Opera	Operating	Standard	,			ints	Possible causes	Action
procedure	stage	Check instrument	Digital voltmeter Ri min \geq 10k Ω	Control- ler terminal	Setpoint selector terminal	Test socket	of deviations from the standard value	
1	A/C power supply	Yellow "light" button depres- sed, display illu- mination ON					Controller and test socket disconnected	Check wires and connections
			24V +15 % -10 5060Hz	B1 B2			Mains switch off Control switch off Fuse defective	Check devices
2	DC power supply	Indicator lamp Y ₂ , U ₁ , G ₁ or G ₂ illuminates					Controller and test socket disconnected	Check wires and connections
	section		22V +15 %	A24 B4			Rectifier defective	Replace controller board or rectifier
3	DC power supply Bridge	Selector on in "setpoint" position, indication same as selected setpoint Tolerance ± 0.3°C					Controller and test socket disconnected	Check wires and connections Measure with digital voltmeter as per test procedure 3a
3a			-15V ±0.05V +15V ±0.05V		3(上) 1 3(上) 2		Controller and setpoint selector disconnected	Check wires and connections Measure with digital voltmeter as per test procedure 3b
3 b			-15V ±0.05V +15V ±0.05V	A24 A20 A24 A22			DC supply defective Possible cause: short circuit with earth potential	Replace controller board Measure resistance between terminal A24 and $\cup{$\psi$}$ Standard value:>600 k Ω
	Setpoint selector	Selector in "setpoint" position					Controller and test socket disconnected	Check wires and
4		Indication of same value as setpoint selector Tolerance ±0.3°C		100			Controller and setpoint selector disconnected	Measure with digital voltmeter as per test procedure 4a
4a			0.017V 9.983V DO see table "tempera- ture/volt- age con- vertion"		3(上)		Setpoint selector	Replace setpoint selector
4b			0.017V 9.983V DO see table "tempera- ture/volt- age con- vertion"	A24 A10		F J	Controller and setpoint selector disconnected	Check wires and connections
5	Supply air sensor (sensor signal X ₁)	Selector in "supply air" position Indication of same value as the temp, measured in the supply air (-30+30°C)	3.331				Disconnection	Measure with digital voltmeter as per test procedure 5a

Test	Operating	Standard	d value	value Measuring points			Possible causes	Action	
procedure	stage	Check instrument	Digital voltmeter Ri min ≥ 10kΩ	Control- ler terminal			of deviations from the standard value		
			010V DC see table	A24 A16		F	Controller and test socket disconnected	Check wires and connections	
5a			"tempera- ture/voltage convertion"				Controller and sensor disconnected	Measure sensor resistance See table page "tempera- ture VS. resistance" Replace defective sensor	
								If the sensor is in order, replace controller board	
. 6	Return air sensor (sensor sig- nal X ₂)	Selector in "return air" position. Indication of same value as the temp. measured in the return air (-30+30°C)					Disconnection	Measure with digital voltmeter as per test procedure 6a	
			010V DC see table	A24 A5		F G	Controller and test socket disconnected	Check wires and connections	
6 a			"tempera- ture/voltage convertion"				Controller and sensor disconnected	Measure sensor resistance See table page ''tempera- ture VS. resistance'' Replace defective sensor	
								If the sensor is in order, replace controller board	
	Controller output Y ₁ (to control valve)	Depress blue button"Y ₁ [v]"					Connection between controller and test socket reversed	Check wires and connections	
7	Set setpoint selector at -29° C	Indication 0V					Controller and test disconnected	Check wire and connections	
	Set setpoint selector at +29° C	Indication 1520V DC						Measure with digital voltmeter as per test procedure 7a	
7a			020V DC	B4(+) B5		P (+) N	External short circuit between terminals B4 and B5 on controller	Rectify short circuit (protective diode (CPD), see "MC valve"	
							Transistor fuse defective	Replace transistor fuse see "controller-b"	
	Controller output Y ₂ (on/off)							Check wires and Measure with digital voltmeter as per test	
8	Set setpoint selector at +29° C	Lamp Y ₂ illuminated					Controller and test socket disconnected	procedure 8a	
	Set setpoint selector at -29° C	Lamp Y ₂ off					Connection between and test socket reversed		

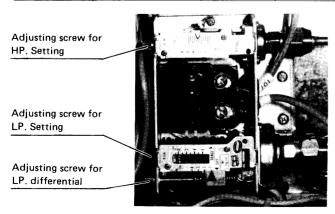

Test	Operating	Standard		Measuring points			Possible causes	Action
orocedure	stage	Check instrument	Digital voltmeter Ri min ≥ 10kΩ	Control- ler terminal	Setpoint selector terminal	Test	of deviations from the standard value	
13.300	Set sepoint selector at -29° C		0V			P D	Connection between controller and test socket reversed	Check relay Y ₂ -29° C = B11-B9 (contact
	-29 C			B4 B12			Controller defective	closed) +29° C = B11-B10
8a	Set setpoint selector at		22V DC +15 _{cr}	612		P D	Controller and test socket disconnected	(contact closed) Check wires and connections
	+29° C		+15 -10 [%]	B4 B12			Controller defective	Replace controller board
	Alarm unit G ₁ "temperature"	Selector in high limit position					Out of calibration	Calibrate high limit according to test procedure 9b
9	too high	Indication 2° C higher then setpoint Tolerance ±0.3° C					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at -29° C	Lamp G ₁ illuminated after approx. 20 s					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at +29° C	Lamp G ₁ off					Connection between controller and test socket reversed	Measure with digital voltmeter as per test procedure 9a
	Set setpoint selector at -29° C		0 V after approx 20	s		P A	Connection between controller and test socket reversed	Test relay G1"controller-b -29°C = B23-B21 (contact close)
9a				B4			Controller defective	+29° C = B23—B22 (contact closed) Check wises and
	Set setpoint		22V DC	B24		P	Controller and test	connections Replace controller board
	selector +29° C		+15 -10	B4 B24		A	controller defective	
	Limit value setting	Selector in "high limit" position		524			Limit value shifted	Turn potentiometer G1 until the check instrument shows +2°C "controller-b"
9b	Set setpoint selector at 0.0° C	Indication +2°C	5.333V D0	A24 A8		F K		Turn potentiometer G1 until the digital voltmeter shows 5.333 V
	Alarm unit G ₂ "temperature" too	Selector in "low limit" position					Out of calibration	Calibrate low limit according to test procedure 10b
10	low	Indication 2° C lower then setpoint Tolerance ±0.3° C						
	Set setpoint selector at +29° C	Lamp G2 illuminated after approx. 20 s					Controller and test socket disconnected	Measure with digital voltmeter as per test procedure 10a
	Set setpoint selector at -29° C	t Lamp G2 off					Connection between controller and test socket reversed	Check wires and connections

Test procedure	Operating stage	Standar Check instrument	d value Digital voltmeter Ri min ≥ 10kΩ	M Control- ler terminal	easuring po Setpoint selector terminal		Possible causes of deviations from the standard value	Action
	Set setpoint selector at -29° C		22V DC +15 _% -10 [%]			P B	Controller and test socket disconnected	Check relay G2 "controller-b" -29.9°C = B19—B18 (contact closed) +29.9°C = B19—B17 (contact closed)
10a				B4 B20			Controller defective	Check wires and connections
	Set setpoint selector at +29° C		0V after approx. 20s			P B	Connection between controller and test socket reversed	Replace controller board
				B4 B20			Controller defective	
10b	Limit value setting	Selector in "low limit" position					Limit value shifted	Turn potentiometer G2 until the check instrument shows -2° C
	Set setpoint selector at 0.0° C	Indication 2° C	4.667V DC	A24 A6		F M		Turn potentiometer G2 until the digital voltmeter shows 4.667V
	Operating mode change over U ₁	Selector switch in operation mode change position					Out of cablibration	Cabibrate according procedure 11b
11		Indication -6.5°C Tolerance ±0.3°C					•	
	Set setpoint selector at -29° C	Lamp U ₁ off					Connecting between controller and test socket reversed	Measure with digital voltmeter as per test procedure 11a
	Set setpoint selector at +29°C	Lamp U ₁ illuminated					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at +29° C		22V DC +15 _% -10 [%]			P C	Controller and test socket disconnected	Check relay U1 +29° C = B15—B14 (contact closed) -29° C = B15—B13 (contact closed)
11a				B4 B16			Controller defective	Check wires and connections
	Set setpoint selector at -29° C		ov			P C	Controller and test socket connections reversed	Replace controller board
				B4 B16			Controller defective	
11b	Mode change-over setting	Selector in "operation" mode change position					Shift in mode change value	Turn potentiometer U1 until the check instrument shows -6.5°C
		Indication -6.5°C	3.9166V DC	A24 A7		F L		Turn potentiometer U1 until the digital voltmeter shows 3.9166V

4.4 Description on electrical and functional parts.

4.4.1 Dual pressure switch <HLPS (63HL)>

This stops the compressor when the pressure has risen or fallen excessively in the unit. The high pressure may rise above preset of HP if the condenser fan fails or cooling water does not circulate properly, etc. The low pressure may fall below preset of LP if "pump down" has been performed because the refrigeration circuit is blocked or the solenoid valves are closed. In these cases, the switch stops compressor.

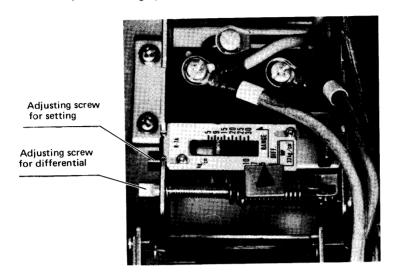

Pressure switch box

(a) Adjustment method

Adjust the switch by turning the adjusting screw as described below;

Adjusting points of dual pressure switch

	Adjusting screw	Rotary o	lirection	Function
High pressure	Setting of adjusting	Clockwise		Setting (OFF value) becomes high, and pressure at the stopping of the refrigeration unit becomes high.
side	screw	Counter- clockwise		Setting (OFF value) becomes low, and pressure at the stopping of the refrigeration unit becomes low.
Low pressure	Setting of adjusting	Clockwise		Setting (ON value) becomes low, and pressure at the starting of the refrigeration unit becomes low.
side	screw	Counter- clockwise		Setting (ON value) becomes high, and pressure at the starting of the refrigeration unit becomes high.
	Setting of adjusting	Clockwise		Pressure difference between ON and OFF becomes large and difference between pressure on the starting and on the stopping becomes large.
	screw for differential	Counter- clockwise		Pressure difference between ON and OFF becomes closer and difference between pressure on the starting and on the stopping becomes closer.



Notes:

- 1) If it is necessary to adjust the adjusting screw for differential, be sure to adjust pressure setting first and then adjust differential.
- 2) After adjusting the adjusting screw, apply chemical to the bolt head to prevent the bolt from being loosened vibration.

4.4.2 High pressure control pressure switch <CFHPS (63CL)>

If the ambient temperature is low during air cooled operation, two out of three condenser fans are turned off so that the high pressure should not fall. (As for more details, refer to "high pressure control")

(a) Adjusting method

Adjust the adjusting screw as staged below.

Adjusting points for high pressure control switch

Adjusting screw	Turning	direction	Function		
	Clockwise		Setting value (ON value) becomes low and fan speed increases		
Adjusting screw for setting	Counter- clockwise		Setting value (ON value) becomes high and fan speed decreases		
Adjusting screw	Clockwise		Pressure difference between ON and OFF becomes large and stopping period of certain fans is prolonged.		
for differential	Counter- clockwise		Pressure difference between ON and OFF becomes small, and stopping period of certain fans is shortened.		

Notes: 1) In case it is necessary to adjust the adjusting screw for differential, be sure to adjust setting first and then differential.

 After adjustment of the adjusting screws, be sure to apply the following chemical to the bolt heads to prevent them from loosening by vibration.

4.4.3 Oil pressure protection switch <OPS (63QL)>

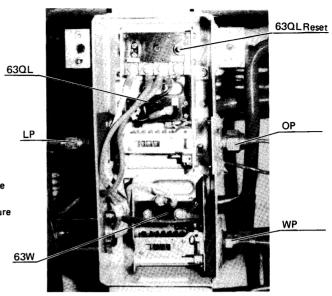
Oil pressure (difference between oil pressure and low pressure) falls due to oil pump failure, clogging and oil foaming.

This stops the compressor automatically when oil pressure continuously remains low, because the compressor may be burnt because of oil shortage.

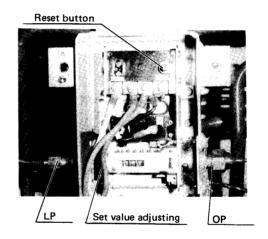
LP: Low pressure
OP: Oil pressure
WP: Water pressure

(a) Operation

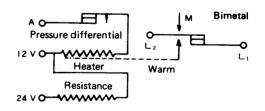
The oil pressure (pressure difference) normally rises when the compressor has started. If the pressure does not rise, power will be supplied to the heater of a timer and a bimetal operate after a preset interval, thereby stopping the compressor.


Note: Timing device is affected by ambient temperature and its set period differs with ambient temperature. (Standard temperature 25°C)

Ambient temperature Set period Higher Shorter


Lower Longer

(b) Resetting


If OPS (63QL) has operated, depress the reset button several minutes after when the compressor stops. (The button will not be reset unless the bimetal is cold.)

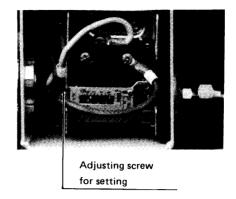
PS box

Oil pressure protection switch

Electric wiring in oil pressure protection switch

(c) Adjustment method

Adjust the oil pressure protection switch by turning the adjusting gear as described below.


Adjusting points for oil pressure protection switch

Adjusting gear	Turning direction		Function
Adjusting	Clockwise	3	Functional pressure (differential) becomes low and heater circuit is disconnected with low pressure difference.
gear for settings	Counter- clockwise	(T)	Functional pressure (differential) becomes high and heater circuit is disconnected with high pressure difference.

Note: The following turning directions are viewed from the low pressure connection side.

4.4.4 Water pressure switch <WPS (63W)>

This switches over air and water cooled modes. If cooling water flows and water pressure rises above a preset water pressure at the inlet, the contact is turned off to stop the condenser fan motor and water cooled operation will start.

(a) Adjusting method

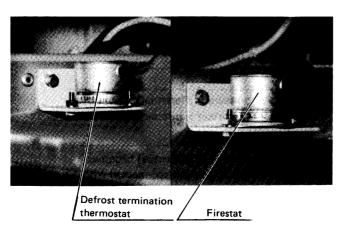
Turn the adjusting screw as stated below.

Adjusting points of water pressure switch

Adjusting screw	Tur	ning direction	Function		
Adjusting screw for	Clockwise		Setting (OFF value) becomes low, and fans stops quicker		
setting	Counter- clockwise		Setting (OFF value) becomes high, and fan is delayed in stopping.		

Note: After the adjustment, be sure to apply loctite to the bolt head to prevent it from being loosened due to operation vibration.

4.4.5 Defrost termination thermostat <DTT (23D)>


This senses ambient temperature around the thermostat and will terminate defrosting.

OFF: 7.2°C ON: 1.7°C

4.4.6 Firestat <HTT (26AH)>

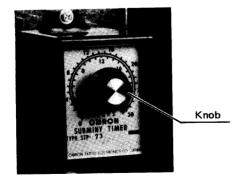
This prevents the electric heaters from overheating. If the heaters are overheating, the ambient temperature around the thermostat rises and the thermostat cuts off the heaters.

OFF: 71°C ON: 49°C

4.4.7 Defrost timer $\langle DT (2D_1) \rangle$

The defrost timer activates defrosting operation automatically at preset intervals. The timer setting is controlled by a knob on its front face. Do not adjust it while operating. Do not set to "0" (hr) it will cause erratic operation.

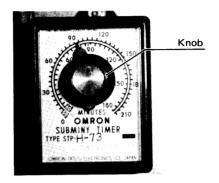
- Adjustable range: 1~24 hours (60 Hz), 1~28½ hours (50 Hz).
- Once power has been turned off, the timer is reset to the initial state.


Defrost Intervals

The factory setting of defrost timer is 12 hours. This setting however provides an excessive interval between defrosting in the case of more severe operating conditions which are sometimes encountered.

The following tablation and note relation to different conditions are suggested.

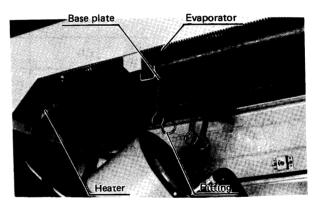
Ref.	Timer setting (HRS)	Condition of cargo
А	12	Seal wrapped cartons and dry cargoes.
В	6	Unwrapped meat or fish.
С	4 OR LESS	Unfrozen wet products or products with high water content.


NOTE) The refrigeration unit should not be used for pulling down the temperature of cargoes or freezing them. The unit has insufficient capacity for such purpose. All cargoes should be loaded into container pre-cooled.

4.4.8 In range timer $\langle IRT (2D_2) \rangle$

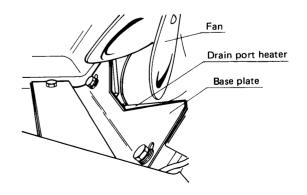
The in range lamp lights up, indicating that inside temperature is in range.

- The in range timer is preset to 90 minutes (50Hz) and should not be adjusted.
- Once power has been turned off, the timer is reset to the initial state.



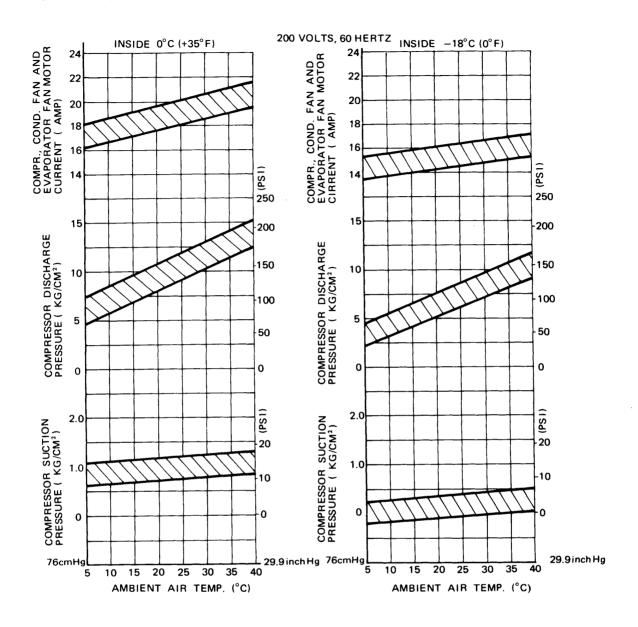
4.4.9 Electric heaters

Two kinds of electric heaters are used.


(a) Sheathed heaters (220V AC, 0.65 kW x 6)

These are fitted at the bottom of the evaporator. H_1 through H_6 are used for defrosting. H_1 and H_2 are used as auxiliary heaters during heating operation. To replace them, lift the fittings up and remove them together with the base plate.

(b) Molded heaters (220V AC, 50W x 2)


These are fitted at the left and right of the drain pan to prevent the drain port from freezing $\langle DP_1 | (H_7) \rangle$ and $DP_2 | (H_8) \rangle$

5. Set values of functional parts

Part name		Function	Set value
Oil pressure protection switch ONS-C106Q	OPS	Heater circuit OFF ON Timer	1.0kg/cm ² 0.5kg/cm ² 110 seconds (ambient temperature 25°C) More than 5 seconds (ambient temperature 70°C)
Dual pressure switch DNS-D306Q	HLPS	Low pressure OFF ON High pressure OFF ON	40cmHgV 0.2kg/cm ² 20kg/cm ² 16.5kg/cm ²
High pressure control switch SNS-C130Q11	CFHPS	OFF ON	7kg/cm ² 12.5kg/cm ²
Water pressure switch SNS-C106Q6	WPS	OFF ON	1.0kg/cm² 0.4kg/cm²
Firestat KLIXON 20420L/L160-4	нтт	OFF ON	71°C (160°F) 49°C (120°F)
Defrost Termination thermostat KLIXON 20420L/L45-1	DTT	OFF ON	7.2°C (45°F) 1.67°C (35°F)
Defrost timer STP-73	DT	ON	10h (60Hz) 12h (50Hz)
In range timer STP-H73	IRT	ON	75 min. (60Hz) 90 min. (50Hz)
Overcurrent relay CR-20-NP ₂ S ₄	OL	OFF	5.5A
Circuit breaker (main circuit) MK-53	CB ₁	OFF	32A
Circuit breaker (control circuit) CP 31	CB ₂	OFF	7A
Thermal protector for fan motor KLIXON 9700L-01-11 (cond. fan motor) 9700K-01-11 (evap. fan motor)		OFF	120°C (248°F)
Thermal protector for compressor KLIXON 7895 (compressor)	IPC	OFF	105°C (221°F)

6. Operating pressure and running current

< For reference >

		Item	Unit	Value
1		 during defrosting mary side of HTR₂ (88H₂) 	Α	10.5 (AC 220V)
2	Running curren	t of condenser fan motor	Α	0.7 (AC 220V)
3	Running curren	t of evaporator fan motor	Α	3.0 (AC 220V)
4		Compressor		240 ± 20/17.3 ± 1.4
		Compressor stop valve flange		140 ± 15/10.1 ± 1.1
	Bolt tightening	Fan motor	kg·cm/ _{lb} .Ft	70 ± 7/5.0 ± 0.5
	torque	Solenoid valve		75 ± 5/5.4 ± 0.4
		Expansion valve		140 ± 10/10.1 ± 0.7
		Fan		30 ± 3/2.2 ± 0.2

7. Troubles and countermeasures

If the unit does not work properly, inspect it in accordance with "Troubles and countermeasures" to find cause of trouble and repair it.

Troubles and countermeasures

State	Phe	enomena	Functioning places	Cause	Countermeasures	
	A:	Condenser evaporator	a. No trouble with unit	Current interruption Power source is	Trace cause	
		fans and compressor		disconnected.	Connect power source plug to power source.	
שַ		are inoperative.	b. Circuit breaker function (main circuit)	over current.	Trace causes and replace.	
			c. Circuit breaker function (control circuit)	It functions due to over current.	Trace causes and replace.	
I. Operation inoperative	B:	Evaporator fans operate but condenser fans and compressor	a. No trouble with unit	The unit halts by function of the temperature recording controller or in heating operation.		
<u>:</u>		are inoperative.		Setpoint selector is high	Readjust temp. setting as designed.	
			b. Oil pressure control	It is not reset yet.	Repair trouble and push down reset button.	
			c. Solenoid valve does not function.	Coil is cut out.	Replace it.	
			d. Controller malfunctions.	Sensor is damaged or other reasons.	Replace it.	
	A:	and compressor stop, keeping	a. Oil pressure protection switch is functioning.	Oil pressure will not rise. Oil is short or oil pump is out of order.	Additional oil charge, or repair oil pump.	
		evaporator fans in operation.	b. No trouble with unit	Controller functions and stops unit.		
	B:	Condenser fans and compressor operate on and off repeatedly with evaporator fans in operation.	a. Pressure switch functions.	Excessive charge of refrigerant.	Discharge refrigerant.	
			High pressure side	Air in system	Air purge	
				Insufficient air flow for air cooled operation.		
				Condenser or passage clogged.	Clean or remove obstacle	
-				Fan blade damaged.	Repair or replace.	
				Fan motor does not rotate.		
2				Capacitor inoperative.	Replace it.	
ii. Operation stop				Fan motor thermostat has functioned.	Trace causes.	
<u>.</u>				Insufficient water volume for cooling operation.		
-				Condenser is clogged with scale.		
			Lower pressure side	Insufficient refrigerant charge.	Additional charge, seek leaking positions and repair.	
				Dryer clogging	Replace	
				Moisture chokes	Exchange dryer.	
				Gas leakage from feeler tube of expansions valve.	Exchange it.	
			b. Over-current relay or compressor protection thermostat has functioned.	Excessive large current due to over-load operation.	Trace causes.	

State	Ph	enomena	Functioning places	Cause	Countermeasures
·	A:	Compressor inoperative.	a. Solenoid valve will not close.	Blocked with dust.	Replace it.
Inside temp. is low than temperature setting			 b. Controller does not function. 	Sensor is disconnected	Replace it.
			c. Sensor is installed wrongly.		Reattach it.
Ξ΄	B:	Hotgas bypass does not work	Modulating	Blocked with dust	Repair or replace
		does not work	control valve does not open	Controller is defective	Replace transistor or controller
ire Irop	A:	Inside temperature	a. Modulating control valve does not close.		
IV. Inside temperature does not drop		does not reach to preset temperature (Fans and compressor wor	b. Capillary tube is defective	Blocked with dust	Repair or replace
V. Inside temperature is not stable	A:	Inside temperature is not stable during chilled and heating operations (Fans and compressor work properly)	a. Opening of modulating control valve (valve control valtage Y ₁) is not stable	Controller is improperly adjusted	Adjust or replace
VI. Heating	A:	Heater is inoperative.	a. No trouble with unit	Setting of set point selector is under -6.5°C	
<u> </u>			b. Firestat	Insufficient evaporator air volume	
VII. Defrosting operation		Defrosting and refrigerating operation are repeated in a short period of time.	a. Defrost timer incorrectry set or faulty.	Improper adjustment	Readjustment

8. PTI (Pre Trip Inspection)

To keep the unit in good operating condition, check adjust or repair the unit when necessary. The following is the checking items of PTI (an example of container refrigeration unit checklist).

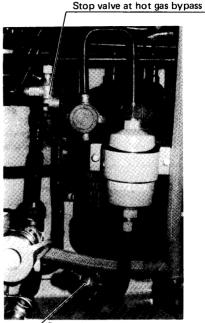
Container refrigeration unit inspection card

	Installed ship name					Date of Inspection		
	Container No. Loaded cargo Loaded or none				Place of Inspection			
	Custom			Loade	d or none	Unit Model No. Unit No.		
	Service					Compressor No.	· · · · · · · · · · · · · · · · · · ·	
	Check			Check p	oint "	Check method	Reference value	
		1	External appearant		rtants parts of container amaged points)	Visual		
		2	Cleaning interior as	nd exterio	r of container	Visual		
		3	Checking the smud	_		Visual		
		4			nside and outside unit	Visual		
		5	The refrigeration coll (mainly at joint	ircuit for l		Halide torch, Visual	Flame reaction should be bluish purple	
		6	Checking external a	appearanc	e of power cable	Visual		
		7	Cleaning drain hose	е		Visual	Shall be free from clogging	
tion		8	Mounted condition	of electri	c heaters	Visual	Make sure that leads are not in contact with heaters	
era		9	Checking exterior of	of firestat		Visual	Shall have no damaged part	
Check before operation	1	10			glands and monitoring	Retighten with tool	Make sure that they are firmly tightened	
ock be		11	Bolts for compressor	or, fans, a	nd motors, etc.	Retighten with tool	Make sure that they are firmly tightened	
ວັ	1	2	Clearance between fan and fan guide			Visual	Eraporator fan : 5~9 mm Condenser fan : 3~7 mm	
	1	3	Sealing at control box, and PS box, etc.			Visual	Packing and sealing should be intact	
	1	4	Wire terminals for I	loosening	correction	Visual, driver		
	1	9	Contact and/or coil of magnetic contactor for burning			Visual		
	1	6	Unit insulation resistance	Electric	$\begin{array}{cccc} \text{ssor circuit} & & & & & & & \\ \text{heater circuit} & & & & & & \\ \text{tor fan circuit} & & & & & & \\ \end{array}$	DC 500V megger	2MΩ or more	
	1		Checking operation pressure protection		CUT OUT kg/cm² CUT IN kg/cm²	Tension gauge Timer	1.0 kg/cm ² 110 seconds 0.5 kg/cm ² (25°C)	
	1	8	Supply voltage			Check line voltage at primary si- de of circuit breaker (main circuit)	Within ±10% of related voltage	
	1	9	Checking condense for vibration and n		oorator fan motors	Touch and listen		
	2	20	Checking amount of	of circulat	ng refrigerant	Check liquid indicator	Make sure that it is sealed	
Ľ.		21	Checking for water	in refrige	rant	Check liquid indicator	Deep blue	
Check during operation	2		Checking compress condition)	or oil leve	l (operating	Check compressor oil level gauge	(oil level 1/4 – 3/4)	
g O		23	Confirm function of	of the reco	rder and the battery	Visual		
Ë	2				oller and pilot lamps	Check instrument		
ಕ	2	25	Checking manual d	efrosting	operation	Manual defrost switch		
Check	2	26	Electric heater operation and curre	R.	s T	Clamp meter		
	2		Checking operation thermostat (Compl			Mount thermistor to termination	on thermostat OFF 7.2±1.7°C	
	2		Unit operating curr		ST	Clamp meter -18°C V Hz		

	Check No. Check point		Check method	Reference value		
Check during operation		29	Checking operation of dual pressure switch	H—CUT OUT kg/cm²	Blind air inlet	20 kg/cm²
				L-CUT OUTmm HgV	Accomplish pump down by use of the stop valve at the	400 mmHgV
				L-CUT IN kg/cm²	accumulator receiver outlet	0.2 kg/cm ²
		30	Checking operation of water pressure switch	Checking switchover from water-cooled to air-cooled operation	Disconnect water coupling	Condenser fan motor shall operate
				Checking switchover from air-cooled to water-cooled operation	Connect water coupling and supply water	Condenser fan motor shall stop
		31	Checking voltage	Checking 400V class operation	Place voltage selector lever upward	
			selector	Checking 200V class operation	Place voltage selector lever downward	
	3		Inside °C temperature	0°C	−18°C	Automatic operation at -18°C
			Ambient °C temperature			in one cycle
		32	LP kg/cm ²			COMP OFF M
		-	HP kg/cm ²			COMP ON M
			Operating time Imme after opera	Operation 0°C Hr M	Operation -18°C Hr M	Automatic Hr operation at -18°C M
				Operation starting time		
		33	Checking automatic Defrost time M			
Check after operation		34	Place new chart			
		35	Close caps for control box and PS box, etc.			
		36	Write down details of service on history cards			

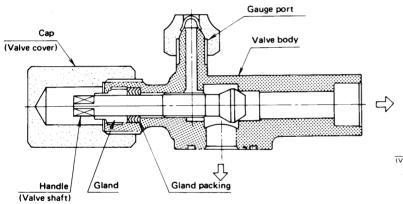
9. How to maintenance

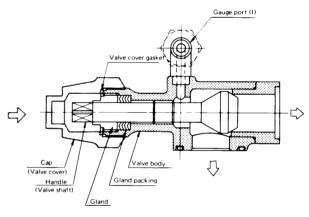
9.1 Handling method of the stop valve


(1) Place of the stop valve and its kind
Stop valve at compressor discharge side

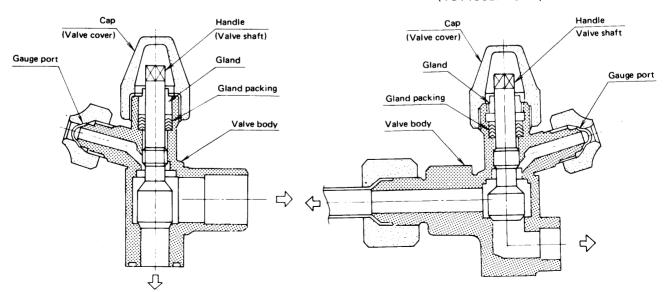
Stop valve at compressor suction side

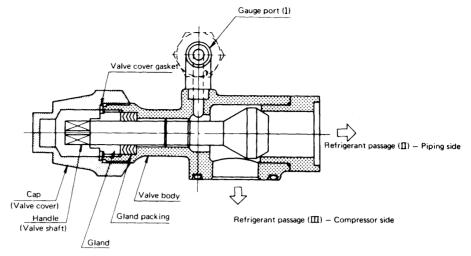
(2) Structure of stop valve


 Stop valve at compressor discharge side (VSH10VAP-5S)


Stop valve at accumulator-receiver outlet side

Stop valve at compressor suction side


(VSH22XBP)

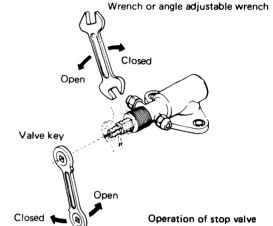

3. Stop valve at accumulator-receiver with heat exchanger outlet side (VSV10CB-4S)

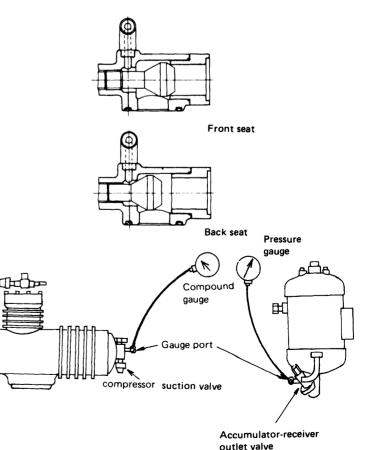
4. Stop valve at hot gas bypass (VSV10CBP-4S-4F)

(3) Handling method

- 1) Remove the valve cap. At this time, be careful not to lose the gasket.
- Loosen the gland in a way the refrigerant is not extracted.
- 3) Fully close the handle The refrigerant passage I is connected to III (Front seat)
- 4) Fully release the handle The refrigerant passage
 II is connected to III
 (Back seat)
- 5) Set the handle at the neutral position

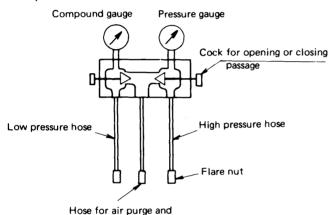
......The refrigerant passage
I is connected to II and
III.

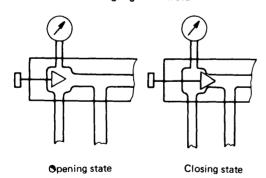

- 6) The refrigerant passage differs with the procedure mentioned in 3, 4, or 5. So select the best passage by necessity.
- 7) Operate the handle, tighten the gland and place the valve cap as it was after completion of the work.


 At this time, do not forget to attach the gasket.

9,2 Attaching or removing points of pressure gauge

(1) Attaching a general pressure gauge


- After opening the compressor suction valve and the accumulator-receiver valve fully (back seat), connect a pipe to the gauge port.
- Loosen a little the flare nut on the pressure gauge side and tighten the handle of the stop valve a little (Middle seat) and return it at once. Thus the air is purged.
- 3) After purging the air, accurately tighten up the flare nut on the pressure gauge side.
- 4) Close the handle of the stop valve a little, and confirm that the needle of the gauge rises.
- 5) Be certain that the needle of the pressure gauge does not oscillate during the operation of the unit. If it oscillates, do not close the gauge port fully and open the handle of the stop valve a little.
- 6) In case the pressure gauge is attached to the low pressure side, if the low pressure is lower than the atmospheric pressure, the air is drawn in the piping during the air purging. So install the pressure gauge after confirming that low pressure is higher than the atmospheric pressure.
- 7) Operate the unit and confirm that the unit is stopped without pump down.


(2) Attaching the gauge manifold

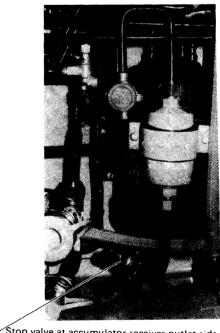
- 1) With regard to mounting points, note the same caution as that for general pressure gauges.
- 2) Open the cocks which are attached to the both sides of the gauge manifold when mounting. Loosen the blind cover of the centre hose, and close the gauge port for the compressor suction valve and the accumulatorreceiver outlet valve. (Back seat)
- 3) Attach the flare nut of the hose of the manifold on the high pressure side tightly and the on the low pressure side loosely.
- 4) Loosen the accumulator-receiver outlet valve and vent the air from the hose on the low pressure side and the centre hose and then once again keep the stop valve in the back seat state. After that tighten up the flare nut on the low pressure side.
- 5) After closing the cocks of the gauge manifold, keep the cock of the compressor suction valve and accumulatorreceiver outlet valve at the neutral seat and measure pressure.

Structure of gauge manifold

refrigerant charge

Opening and closing states of gauge manifold

- (3) Removing the pressure gauge and the gauge manifold, as stated below.
 - When the high pressure hose is removed, note that the liquid refrigerant in the hose may jet out, which is very dangerous.
- 1) Hold the handle of the stop valve in the back seat state, and close the gauge port.
- 2) Open the cock (in care of gauge manifolds) or the flare nuts (in case of general pressure gauges) a little to extract the refrigerant from the hose.


- At this time, do not open it suddenly so as not to joint out liquid refrigerant.
- 3) After extracting the refrigerant from the hose, remove the pipe connection for the gauge piping.
- 4) Place the blind cover on the gauge port of the stop valve, accurately tighten up the flare nut and confirm no refrigerant leaks.

Note: Since the blind cover is very small, be careful not to loose it.

9.3 Pump down

Pump down means that the refrigerant in the refrigeration circuit is liquidized and collected in the Accumulator-receiver with heat exchanger. This work is required to repair the refrigeration circuit for minimizing leaking volume of the refrigerant and risks due to pressure rising.

- < Working procedure >
- 1) Install pressure gauges to the high pressure side.
- 2) Operate the refrigeration unit (either on water cooled or air cooled operation)
- 3) Close the accumulator-receiver outlet valve.
- 4) Stop the operation when reading of the low pressure gauge becomes o.1 kg/cm² and close the compressor discharge valve.
- 5) After a short while, read the low pressure gauge. If pressure rises, open the compressor discharge valve and repeat the same procedure.
- 6) Repeat the same procedure two or three times, and the refrigerant is collected in the accumulator-receiver with heat exchanger. If no pressure gauge is attached, the unit is stopped by the low pressure setting of the dual pressure switch.

Stop valve at accumulator-receiver outlet side

9.4 Charging and purging the refrigerant

(1) Purging non-condensable gas

If non-condensable gas such as air exsits in the refrigeration circuit, it is collected by the accumulator-receiver with heat exchanger, which raise pressure in the accumulator-receiver with heat exchanger abnormally high and reduces heat transferring ratio of the condenser surface. It is, therefore, very important to extract non-condensable gas. If discharge pressure is abnormally high (even though cooling water volume is increased, in case of water cooled operation) and will not return to the normal pressure, inspect if non-condensable gas such as air exsists in the following method.

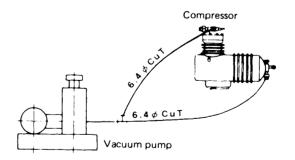
- Stop the compressor, close the accumulator-receiver oultet valve and wait until leaving and entering cooling air (or water) of the air (water) cooled condenser become equal. If there is any difference between saturated pressure corresponding to cooling air (water) and condensing pressure, non-condensable gas exists.
 In this case, purge non-condensable gas as stated below.
- 1) Accomplish pump down
- Condense the refrigerant as much as possible, and then discharge it from the gauge port of the compressor discharge valve.
- 3) Discharge the condensed refrigerant repeatedly reading the pressure gauge until condensing pressure becomes saturated pressure.

(2) Refrigerant purge

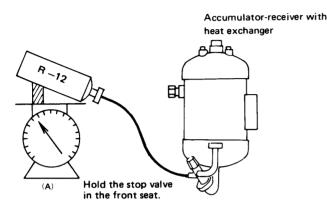
There are two methods of refrigerant purge; i.e. one is for collecting the refrigerant extracted in a cylinder and the other is for discharging it to the atomosphere.

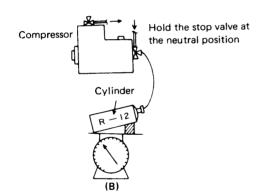
- (a) Collecting the refrigerant in a cylinder
 - 1) Prepare an empty cylinder which has been dried by forming vacuum inside and weigh it.
 - 2) The cylinder is connected to the gauge port of the Accumu-receiver with heat exchanger by piping with the cylinder cock closed, and then loosen the flare nut on the cylinder side a little to vent the air from the piping.
 - Operate the refrigeration unit to pump down the refrigerant.
 - 4) After completion of pump down, open the gauge port of the accumulator-receiver with heat exchanger and then open the cock of the cylinder to collect the liquid refrigerant into the cylinder.
 - After collecting the refrigerant, close the gauge port and the cock and then remove the piping.
 - Be certain that the refrigerant has been collected in the cylinder by weighing it.
 - As for the refrigerant remaining in the refrigeration circuit, extract it to the atmosphere.
- (b) Extracting the refrigerant to the atomosphere
 - Open the gauge port on the suction side of the compressor to extract the gaseous refrigerant to the atmosphere.
 - 2) Do not open the compressor discharge valve or the gauge port of the accumulator-receiver with heat

- exchanger, otherwise the refrigerant oil and the liquid refrigerant are discharged, which may result in shortage of oil or getting chillblains.
- 3) Do not extract the refrigerant in a closed room and also confirm there is no fire around it. Although the refrigerant is non-toxic, there may be fear of suffocation. In addition, if the refrigerant contacts with fire, it yields phosgene gas (toxic gas).
- (3) Vacuum drying and charging refrigerant and refrigeration oil

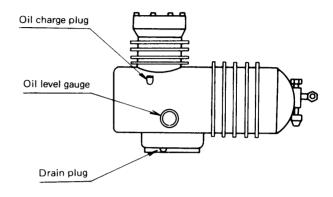

If all the refrigerant has leaked out and the air is intermixed in the refrigeration circuit, repair a cause of trouble and do vacuum drying. Then charge the predesigned volume of refrigerant. In case the refrigerant oil is replaced, do the same.

(Required tools)


- 1. Refrigerant cylinder (20 kg) for R-12 (CCl₂ F₂) with mouth piece
- 2. Refrigeration oil (20l can) SUNISO 3GS-DI)
- 3. ϕ 6.4 CuT (with two flare nuts)
- Pressure gauge (20 kg/cm²), compound gauge (10 kg/cm² x 75 cmHg)


or gauge manifold

- 5. Weighing scale (Up to 50 kg)
- 6. Tools
- 7. Vaccum pump
- (a) In case the refrigerant is replenished without exchanging the refrigeration oil.
- 1) Connect the vacuum pump to the gauge ports of the compressor suction and discharge valves, form vacuum down to 76 cmHg, hold the stop valve in the back seat state and then remove the vaccum pump, leaving the vacuum state in the refrigeration circuit. However, when air enters in the refrigeration circuit, form the vaccum in the circuit down to 76 cmHg and leave it for more than 2 hours (vaccum drying).


2) To evacuate the refrigeration circuit between the solenoid valve and expansion valve, reduce pressure of the circuit below the preset level of the low pressure switch lower the presetting level of the set point selector, operate the refrigeration unit, and open the solenoid valve for evacuation. At this time (vacuum drying), the compressor remains idle since the low pressure switch is off, and the solenoid valve alone open.

- Place a refrigerant cylinder on the weighting scale, and record its weight.
- 4) In case the refrigerant is charged in the liquid state, do it as shown in the above figure (A). Prevent the liquid refrigerant collected in the accumulator-receiver with heat exchanger from flowing to the low pressure side. If the refrigerant is hardly charged, operate the compressor to charge it.
- 5) In case the refrigerant is charged in the gaseous state, do it as shown in the above figure (B). If the refrigerant is hardly charged, operate the compressor to charge it.
- 6) Charge the predesigned volume of the refrigerant in the above stated methods either in 4 or 5.
- 7) After completion of refrigerant charge, hold the stop valve in the back seat state and confirm that if the predesigned volume of the refrigerant has been charged by operating the refrigeration unit.

- (b) Charging the refrigerant as well after replenishment of refrigerant oil
 - Extract the refrigerant oil. → Firstly discard all the gas so that pressure in the refrigerant circuit becomes 0.
 Then loosen the drain plug at the bottom of the compressor to extract all the oil. At this time, firstly open the oil charge plug and then the drain plug to prevent the oil from jetting out.

- 2) Tighten up the drain plug.
- 3) Charge the predesigned volume of the oil from the charge plug of the compressor.
- 4) Accomplish vacuum drying and refrigerant charge stated in (1).
- 5) Be sure to stop the compressor while this work is accomplished.
- 6) When the refrigeration oil is discarded, be sure to remove the oil level gauge for cleaning.
- Recommendable refrigeration oil is SUNISO 3GS-DI. SUNISO 3GS – DI is superior to SUNISO 3GS in heat resistance.
 Maker of SUNISO 3GS – DI is SUN OIL CO., LTD.
- 8) Do not mix two refrigeration oils.

(U.S.A.)

- 9) Do not use oil which is left opened to the atomosphere for a long time, as it may contain water. In case oil still remains in the oil can after charging, be sure to cap it.
- (c) In case only the refrigeration oil is exchanged.
- 1) Operate the refrigeration unit to pump down the refrigerant by use of the accumulator-receiver outlet valve and stop it when low pressure becomes 0.1kg/cm₂.
- 2) Tighten up the discharge valve of the compressor.
- 3) Open the gauge port on the suction side to extract the refrigerant on the low pressure side.
- 4) Charge the oil from the oil charge plug. At this time, form the vaccum gradually to hasten oil charge.
- 5) Restore the stop valve to its original state.

DAIKIN INDUSTRIES LTD

Tokyo Office: Shinjuku Sumitomo Bldg 6-1, 2-chome Nishi-Shinjuku Shinjuku-ku Tokyo Japan

Post No. 160-91 Tel (03) 347-8257

Telex: 32540

Cable ADDRESS: TKYDAIKINOKAY