DAIKIN

Marine type Container Refrigeration Unit

Service manual

Model

S DAIKIN INDUSTRIES LTD

This manual describes the features, functions, operation, and maintenance of the container refrigeration unit. In addition, the manuals listed below are also available.

• Parts list

Compressor disassembly & reassembly manual

Please refer also to these manuals.

DANGER

Do not disconnect plug until power supply is shut off.

CAUTION

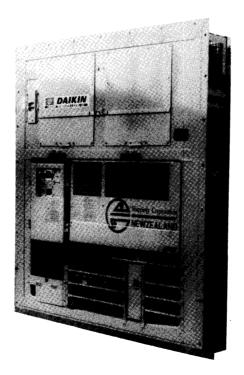
Do not start the unit until plugs are connected and generator plant is operated.

NOTE

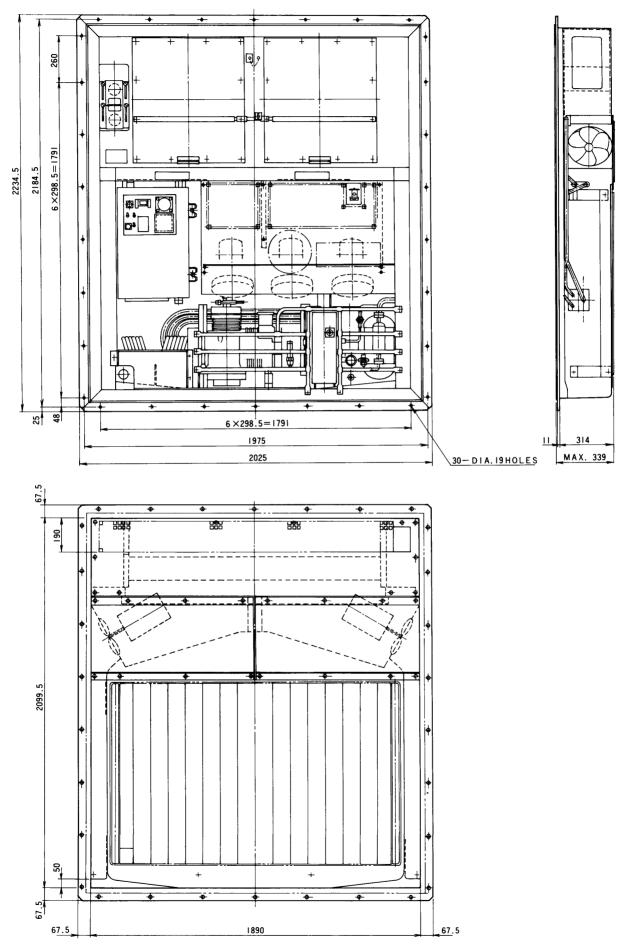
- 1. Confirm the function of the recorder when the chart paper is replaced with a new one. Do not mistake the chart of chilled cargo for that of frozen cargo.
- 2 . Accurately tighten the covers for the control box and the recorder.
- 3 . Confirm that the stop valves in the refrigeration circuits are opened before operation.

Index

1. Sp	pecification	4
1.1 G	eneral specification	4
	utline	
1.3 Co	onstruction	6
	Outside	
	Inside	
	Control box	
	ping diagram	
1.5 W	iring diagram	
1.5.2	Actual wiring	
	How to read wiring diagram	
2. Op	peration1	5
	reparation and operation	
2.2 0	hecking during operation	8
2.3 N	faintenance after operation 18	8
3. Or	perating modes and circuits1	_
3.1 0	oltage selection system (switching over 200V and 400V class)	9
3.2 F		1
3.4 0	Chilled operation-capacity control	1 2
3.5 H	leating operation	ς Δ
3.6 D	Defrost operation	5
3.7 H	ligh pressure control	5
3.8 P	ilot lamps and monitoring circuit	6
	• • • • • •	
	ajor components and maintenance2	
	mponents related with refrigeration circuit	
4.1.1	Compressor	
4.1 <i>.</i> 2 4.1.3	Air-cooled condenser and evaporator	
4.1.3	Water-cooled condenser 2 Accumulator-receiver with heat exchanger 2	7
4.1.5	Expansion valve	ð o
4.1.6	Liquid/moisture indicator	
4.1.7	Dryer	
4.1.8	Solenoid valves	1
4.2 Co	mponents related with the air system	2
4.2.1	Fans and motors	
4.2.2	Ventilator	3
	mperature control system	-
4.3.1 4.3.2	Sensor FC-KTRP 34 Setpoint selector PC-RP 30/30 35	•
4.3.2		-
4.3.4	Controller RFC-92GS 36 Modulating control valve M3F15L 39	-
4.3.5	Recorder ES190/30	-
4.3.6	Check instrument	-
4.3.7	Checking operation of the controlling devices	-
4.4 De	scription on electrical and functional parts 47	
4.4.1	Dual pressure switch (63HL)	1
4.4.2	High pressure control pressure switch (63CL)	3
4.4.3	Oil pressure protection switch (63QL) 4g)
4.4.4	Water pressure switch (63W)	-
4.4.5	Air switch (63DA)	
4.4.6 4.4.7	Defrost termination thermostat (23D)	1
4.4./	Firestat (26AH)	1

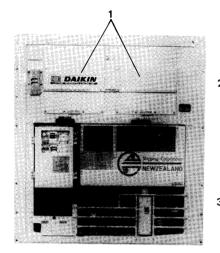

4.4.8 Defrost timer (2D)	5 5	1 1
5. Set values of functional parts	5	2
6. Operating pressure and running current	5	3
7. Troubles and countermeasures	54	4
8. PTI (Pre Trip Inspection)	50	6
9. How to maintenance	51	B
9.1 Handling method of the stop valve 9.2 Attaching or removing points of pressure gauge 9.3 Pump down 9.4 Charging and purging the refrigerant	· · · · · 59	9 0

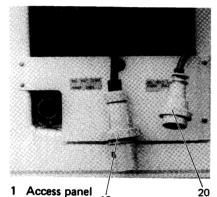
.


1. Specification

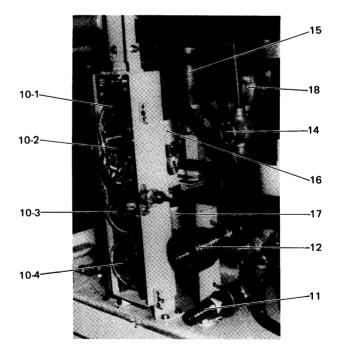
1.1 General specification

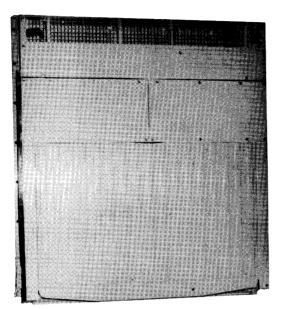
Dower europhy	AC 200V 3 Phase 50/60Hz			
Power supply	AC 200V 3 Phase 50/60Hz			
	AC $380 \sim 415V$ 3 Phase 50 Hz			
	AC 440V 3 Phase 60 Hz			
	(Dual voltage rating with voltage selector)			
Compressor	Semi hermetic type (3.75 kW)			
Evaporator	Cross finned coil type			
Air cooled condenser	Cross finned coil type			
Water cooled condenser	Hairpin-shaped tube-in-tube type			
Accumulator-receiver with heat exchanger	Vertical cylinder type			
Fan	Motor direct driven propeller type			
Fan motor	Single-phase squirrel-cage induction motor			
Defrost				
Heat source	Electric heater			
Initiation	Air pressure switch, timer or manual switch.			
Termination	Sensing evaporator temperature by defrost termination thermostat			
Refrigerant control	Thermostatic expansion valve			
Capacity control	Hot gas bypass control with modulating control valve			
Protection devices	Circuit breaker, Over current relay, Dual pressure switch, Oil pressure protection switch, Fusible safty plug, Firestat, Compressor motor protection thermostat, Fan motor protection thermostat.			
Refrigerant	R-12: 4.5 (kg)/9.9 (lbs)			
Lubricant	SUNISO 3GS-DI : 2.3 (ℓ)			
Weight	Approx. 590 (kg)/1300 (lbs)			



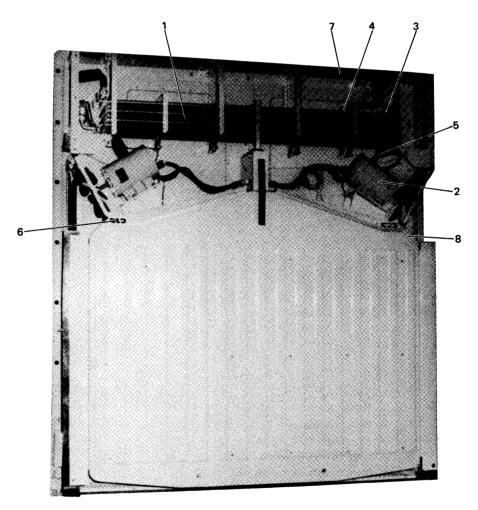

1.2 Outline

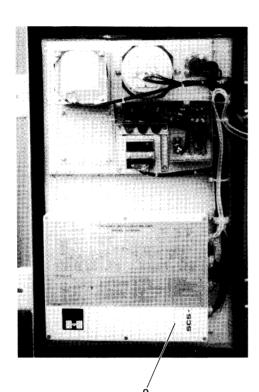
1.3 Construction

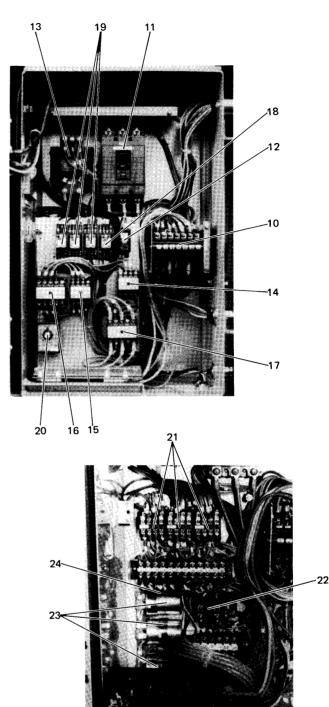

(1) Outside

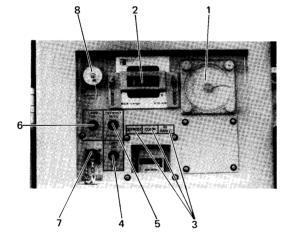


19

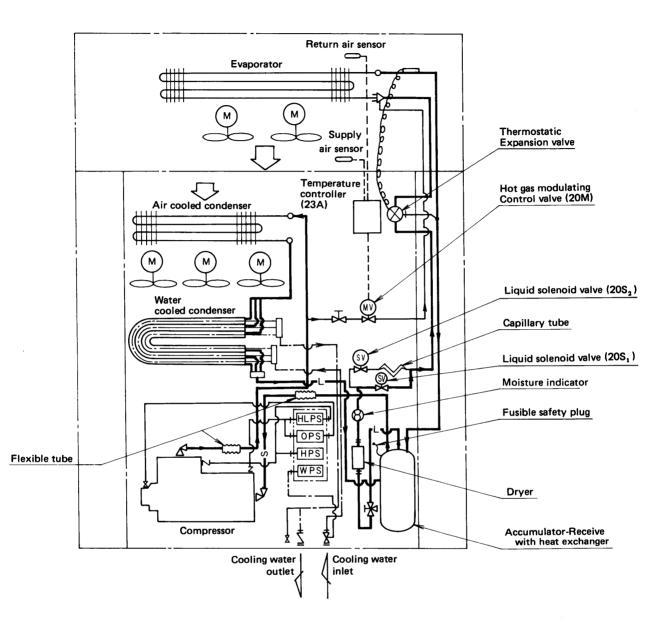

- Access panel
 Ventilator
- 3 Control box
- 4 Air cooled condenser
- 5 Condenser fan motor
- 6 Water cooled condenser
- 7 Cable stowage
- 8 Compressor
- 9 Accumulator-receiver with heat exchanger
- 10 Pressure switch box
- 10 1 Dual pressure switch (63HL)
- 10-2 Oil pressure protection switch (63QL)
- 10-3 High pressure control pressure switch (63CL)
- 10 4 Water pressure switch (63W)
- 10-5 Reset button for oil pressure protection switch
- 11 Water inlet coupling
- 12 Water outlet coupling
- 13 Dryer
- 14 Liquid/moisture indicator
- 15 Modulating control valve (20M)
- 16 Solenoid valve (20S₁ for main line)
- 17 Solenoid valve (20S₂ for liquid control)
- 18 Stop valve for hot gas line
- 19 Power plug 200V
- 20 Power plug 200V
- 21 Drain connection port
- 21 Drain connection pol
- 22 Expansion valve

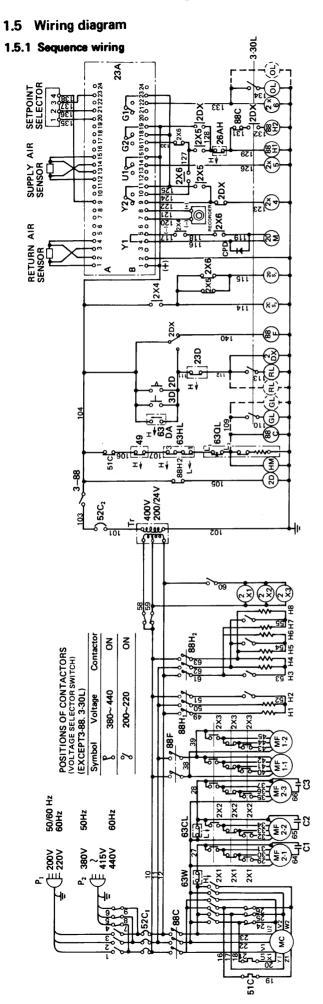



(2) Inside

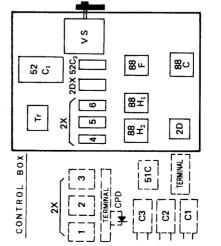


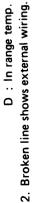
- 1 Evaporator
- 2 Evaporator fan motor
- 3 Defrost termination thermostat
- 4 Firestat
- 5 Defrost heater
- 6 Drain port heater
- 7 Return air sensor
- 8 Supply air sensor




- 1 Recorder
- 2 Setpoint selector
- 3 Pilot lamp (GL, RL, OL)
- 4 Unit ON-OFF switch (3-88)
- 5 Manual defrost switch (3D)
- 6 Lamp switch (3-30L)
- 7 Cannon receptacle for remote monitoring
- 8 Cannon receptacle for ref. checker
- 9 Controller (23A)
- 10 Voltage selector
- 11 Circuit breaker (52C1)
- 12 Circuit braker (52C₂)
- 13 Transformer (Tr)

- 14 Evap. fan motor relay (88F)
- 15 Heater relay (88H1)
- 16 Heater relay (88H₂)
- 17 Compressor relay (88C)
- 18 Defrost relay (2DX)
- 19 Auxiliary relay (2X4, 5, 6,)
- 20 Defrost timer (2D)
- 21 Voltage selector relay (2X1, 2, 3)
- 22 Over current relay (51C)
- 23 Capacitor $(C_{1,2,3})$
- 24 Diode (CPD)

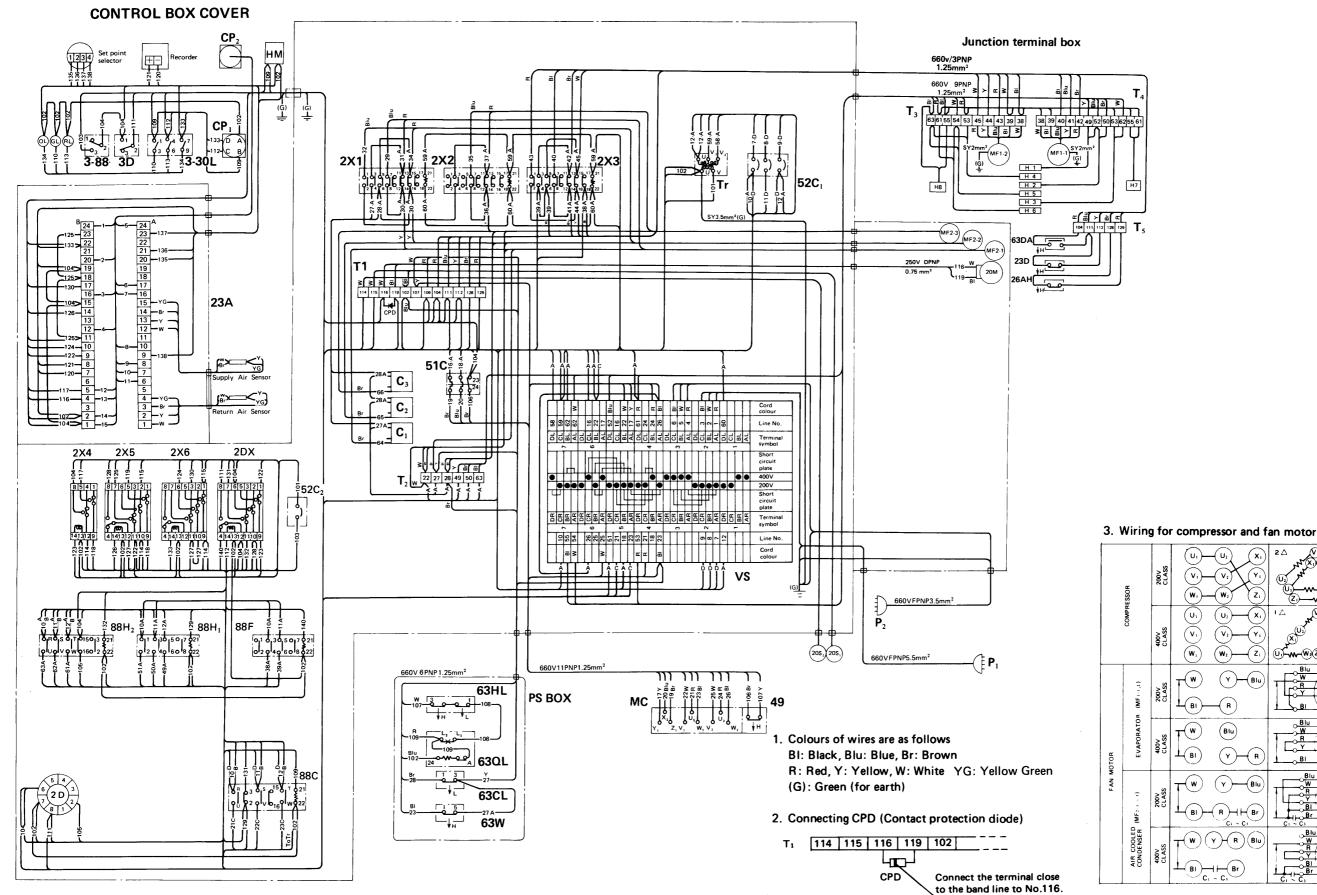

1.4 Piping diagram



L	LIQUID PIPE	HLPS	:	DUAL PRESS. SWITCH
S	SUCTION PIPE	OPS	:	OIL PRESS. PROTECTION SWITCH
D	DISCHARGE PIPE	HPS	:	HIGH PRESS. CONTROL SWITCH
+	FLARE CONN.	WPS	:	WATER PRESS. SWITCH
	FLANGE CONN.			
	WATER PIPE			
	ELECTRIC WIRING			

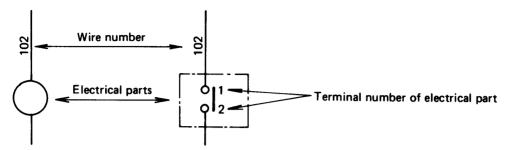
		SOLENOID VALVE	20S _{1,2}	MODULATING CONTROL VALVE
		COMPRESSOR PROTECTOR	49	DRAIN PORT HEATER
HOUR RUN METER	N N N	OVER CURRENT RELAY	51C	COIL HEATER
SWITCH				
HIGH PRESSURE CONTROL	63CL	LAMP	GL.RL.OL LAMP	AN MOTOR
CAPACITOR	0 0	TEMPERATURE CONTROLLER	23A	FAN MOTOR
CPD CONTACT PROTECTION DIODE	CPD	FIRESTAY	26AH	COMPRESSOR MOTOR
		THERMOSTAT		
WATER PRESSURE SWITCH	63W \	DEFROST TERMINATION	23D	2X1~6 AUXILIARY RELAY
63DA DEFROST INTIATION SWITCH	63DA I	MANUAL DEFROST SWITCH	3D	
SWITCH				
63QL OIL PRESSURE PROTECTION	63QL (LAMP SWITCH	3-30L	TOR RELAY
63HL DUAL PRESSURE SWITCH	63HL (ON-OFF SWITCH	3 . 88	88C COMPRESSOR RELAY
DEFROST TIMER	2D [TRANSFORMER	Tr	KER
	2DX DEFROST RELAY			

(GL) (0L)


A : Earth B : Compressor C : Defrost

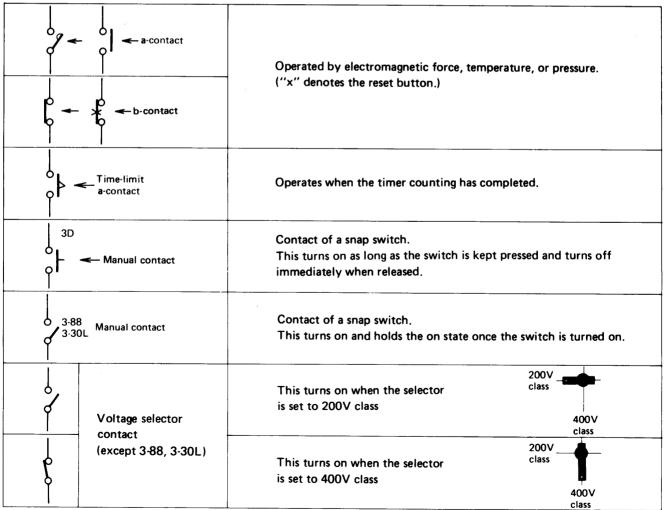
(** •••

1. Monitoring plug connected as follows.


NOTES

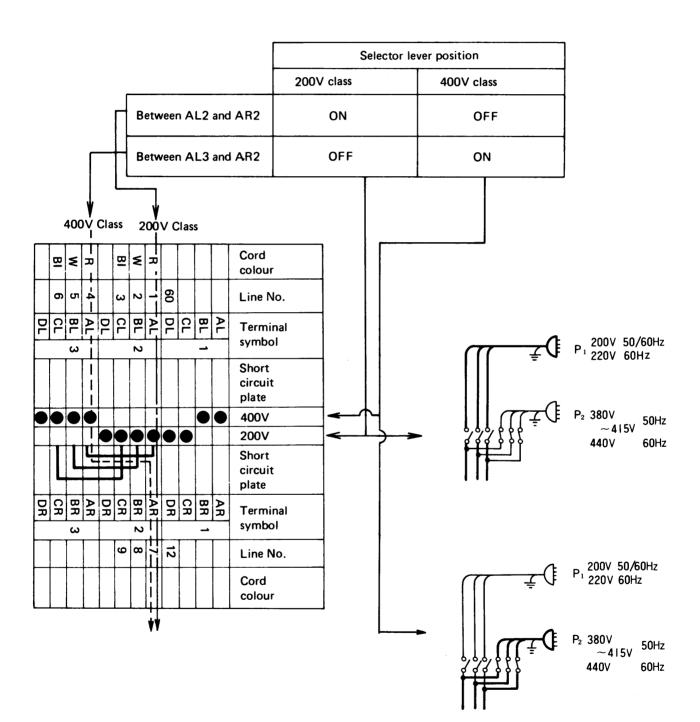
1.5.2 Actual wiring

1.5.3 How to read wiring diagram


(1) In the wiring diagram, marks and numbers have the meanings given below.

- (2) Operation of contacts
- a. The wiring diagram indicates the stationary state in which the circuits are not activated.
- b. When a coil is energized (supplied with power), the associated contact changes its position.

a-contact (nor	mal contact)	b-contact (reverse contact)		
Contact is OFF when coil is not energized	Contact is ON when coil is energized	Contact is ON when coil is not energized	Contact is OFF when coil is energized	
	Coil d-	Coil		


c. Kinds of contacts

d. How to read the wiring diagram of the voltage selector switch.

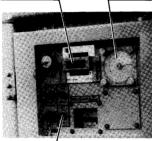
In the chart, "•" denotes that the contact is on.

The following example shows the states between terminals AL2 and AR2, and between AL3 and AR2.

2. Operation

Operate the unit by the procedures given below.

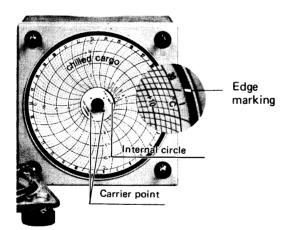
- Preparation and operation
- Checking during operation
- Maintenance after operation

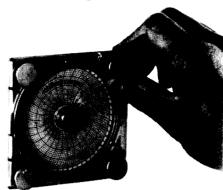

2.1 Preparation and operation

(1) Confirm that supply power is off.

Confirm that the power source, the circuit breaker and unit ON-OFF switch are turned off before checking for safety's sake.

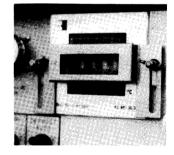
Setpoint selector



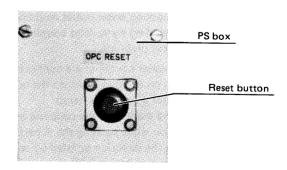

Unit ON-OFF switch

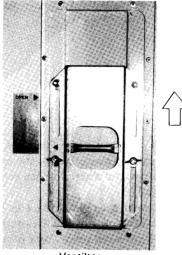
The cover of control box

- (2) Check operation of the recorder and replace the battery if necessary.
- Confirm that a circle is drawn right over the internal circle of the chart. (This is the same with the charts for "frozen" and "chilled" cargo.)
- If the battery is dead, replace it and record the date of replacement at the back of the recorder.



- (3) Replace the chart and set up a new one.
 - Replace a new chart according to the cargo.
 (Do not mistake the chart of frozen cargo for that of chilled cargo.)
 - Bring the date on the chart to the edge marking, then press it so that carrier point at the centre come out.
- Fasten the front water-proof cover firmly.
- (4) Set the setpoint selector.
 - Lossen the wing nuts, then slide the protective cover upward.
 - Select a designated temperature by pressing the buttons arranged above and beneath the degital selector displays.
 - Return the protective cover to its original position and tighten the wing nuts.





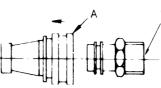
Setting setpoint

(5) Reset the oil pressure protection switch. Reset by pressing the button on the front panel of the PS (Pressure switch) box. The unit does not start unless the switch is reset.

(6) Open or close the ventilator. Open or close the ventilator according to the cargo. (Be sure to keep it closed during transportation of frozen cargo.)

Ventilator

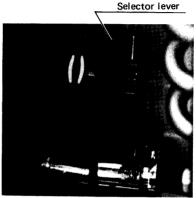
- (7) Connect the cooling water piping.
 - In the case of water-cooled operation, connect the water piping, and supply water through it.



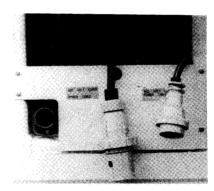
Drain cock

- Connecting method
- 1. Close the drain cock.
- 2. Connect the cooling water inlet coupling.
- 3. Connect the cooling water outlet coupling.
- 4. Open the drain cock and purge the air.
- 5. After having completed air purge, close the cock.
- Disconnecting method
- 1. Disconnect the cooling water outlet coupling.
- 2. Disconnect the cooling water inlet coupling.
- 3. Open the cock and drain off.

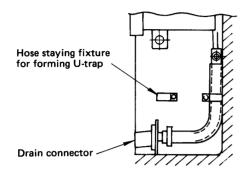
When the cooling water couplings are connected, insert the coupling on the ship side into the coupling on the unit side until a "click" is heard.


When disconnecting them, pull the coupling on the ship side toward you while pushing the A part of the female coupling in the direction pointed by an arrow mark.

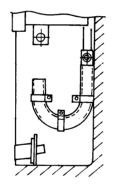
This is provided as ships facility.


Water connection at outlet side

- (8) Check that all refrigerant stop valves are opened.
- (9) Set the voltage selector and power selector according to the supply voltage.



Voltage selector


(10) Plug in the power source which supplies the proper voltage, and fasten the plug firmly.

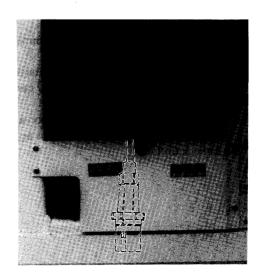
- (11) How to handle a drain hose.
- The method of fitting a drain hose shall be differentiated as follows between the normal transportation and the Techtrol transportation.
- In the case of the normal transportation. Join the drain hose to drain connector.

 In the case of the Techtrol transportation. Detach the drain hose from drain connector and form a U-trap by making use of a hose staying fixture which is attached on casing beforehand.

- (12) Turn on the power switch of the facility (outside the unit).
- (13) Turn ON the circuit breakers and unit ON-OFF switch.
- (14) Close the cover of the control box.If it is loose, water will escape. Check around the packing and tighten the cover securely.
- Note: If the unit stops 2 ~ 3 minutes after starting, the oil pressure protection switch in many cases has been activated.
 If this happens, depress the reset button a few

minutes after the unit stops. If it stops again, repeat the same action.

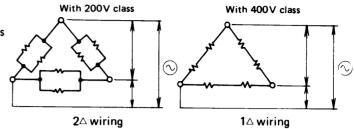
2.2 Checking during operation


Checking items (precautions)	Method of check
1. Check if unusual noise and vibration is produced from compressor, fan and piping etc.	Visual, sensuous and touching.
Check to ensure oil pressure protection switch functions, and the unit on not stop.	does
3. Check suction and discharge pressures of the compressor. (For installat of a gauge, refer to "Section 9, page 59".)	ion Compare observed data with standard ones.
4. Check for proper oil level of compressor. Check to see the oil is clean. (Oil level may fall for a while after starting, but it rises gradually.)	Visual Oil level should be approx. ¼ to ¾ of its full scale.
5. Check to see if refrigerant is sufficient. (The refrigerant bubbles immediately after starting, but this does not mean that refrigerant is lacking.	Lack of refrigerant is indicated by bubbles in the moisture indicator.
6. Check if any moisture is present in refrigerant circuit. (The color of moisture indicator may turn to orange if it has been exposed to gaseou refrigerant for a long time, but this is no indication of trouble.)	Visual The moisture indicator should normally appear deep blue. Orange color is a sign of trouble
7. Check operating conditions with the pilot lamps and check instrument (Stafa).	t Visual
8. Check if the recorder operates according to the inside temperature.	Visual

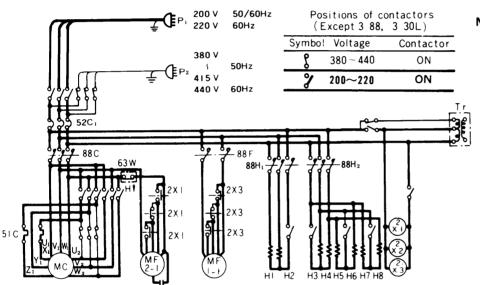
2.3 Maintenance after operation

(1) Stopping

To stop the unit, perform defrosting operation with the manual defrost switch and immediately turn off the unit ON-OFF switch after the compressor has stopped, (stop the unit with "pump-down" state.) After pump down, turn off the circuit breakers.


- (2) Stowing the power cable Turn the plug's opening downward so that sea and rain water cannot enter the plug when stowing it.
- (3) After water-cooled operation Remove the water piping, open cocks, and drain off.
- (4) Close the cover of the control box.

3. Operating modes and circuits


3.1 Voltage selection system (switching over 200V and 400V class)

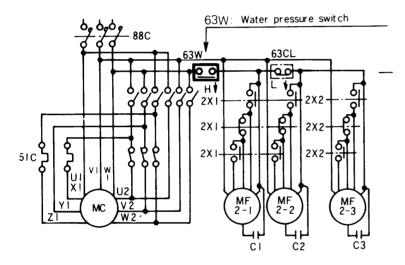
 This unit is adaptable to either of two supply voltages (dual rated voltage). Set the voltage selector (multicontact cam switch) according to the supply voltage by hand. The voltage selector changes wiring of the motors, electric heaters, and the transformer of the control circuits to supply the relevant voltage. For example, the internal wiring of the compressor is changed as follows.

(2) Circuitry

 With 200V class (Set the selector lever to "200V CLASS".) The contacts marked " \$" in the sequence chart (except 3–88 and 3–30L) are turned on. The circuits for 200V class will be set up with the contacts and the voltage selector relay (2X1.2.3) are energized.

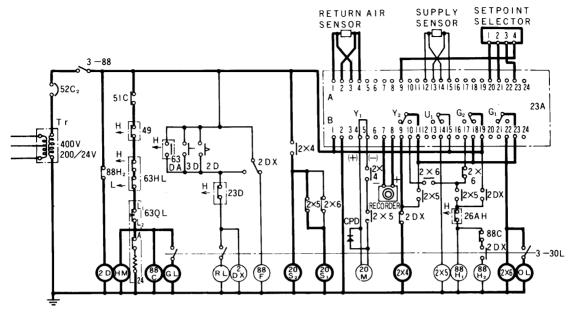
Note: MF2-2, 2-3, and MF1-2 are not shown.

 With 400V class (Set the selector lever to "400V CLASS".) The contacts marked " or in the sequence diagram are turned on and the circuits for 400V class will be set up (2X1.2.3 are off).

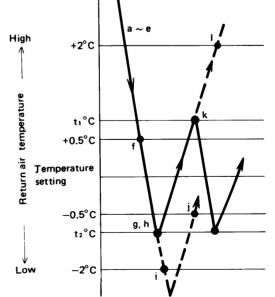

A. With main power supply 200 V Note: MF2-2, 2-3, and MF1-2 50/60Hz Positions of contactors τ-(ĔΡι 220 V 60Hz are not shown. (Except 3-88, 3-30L) Symbol Voltage Contactor 380 V 50Hz ON 380~440 415 V 60Hz 440 V 2 200 ~ 220 ΟN 88 F 880 63 W 88H, 88H₂ 2 X 2 X 3 2 X 3 2 X 510 2 X 3 HI

3.2 Air cooled and water cooled operation

The unit will operate on either air cooled or water cooled condenser operation.


During transit on land, in depot or on a vessegs deck, the air cooled operation will function, and the operation in ship holds is normally water cooled. The operation will be changed from air cooled to water cooled automatically by the water pressure switch; i.e. when water pressure at the inlet of the water cooled condenser rises higher than the presetting value, the contact points of the water pressure switch are opened, so the condenser fan motors stop, and the water cooled operation starts.

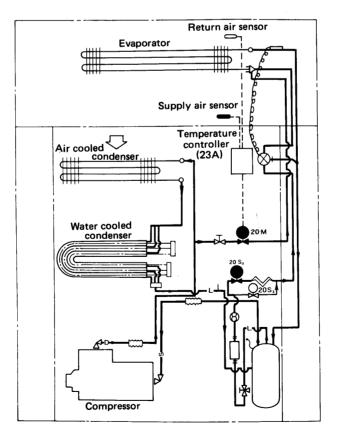
When the water supply is disconnected. The contacts of the water pressure switch are made and the condenser fan motors rotate.


This diagram indicates air-cooled operation mode. When water pressure is applied to the switch, the switch mechanism moves in the direction of H \downarrow , so the condenser fan motors (MF2-1, 2, 3) stop, and water-cooled operation starts.

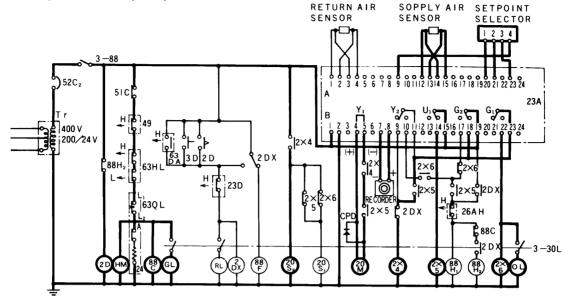
3.3 Frozen operation



- (1) Switching over frozen and chilled modes One of the modes will be automatically selected according to the setting of the setpoint selector.
- When the setting is above -5.0° C : chilled mode
- When the setting is below -5.5°C : frozen mode
- (2) During frozen mode, the compressor will be automatically turned on and off, sensing return air temperature to the evaporator.
- a. Turn on 3-88 (unit ON-OFF switch).
- b. With 88F (evaporator fan relay) energized, MF1-1 and 1-2 (evaporator fan motors) start.
- c. Solenoid valves $(20S_1 \text{ and } 20S_2)$ are open, with relay $2X_4$ energized by Y_2 relays (for compressor and heater) and G_2 (for low limit alarm) of 23A (controller).
- d. When $20S_1$ and $20S_2$ are open, refrigerant flows and low pressure rises. As it reaches 0.2 kg/cm^2 , LP of 63HL (dual pressure switch) are turned on.
- e. With LP on, 88C (compressor relay) gets energized. MC (compressor) and MF2-1, 2 and 3 (air-cooled condenser fan motors) will start and GL (Green lamp) will light up. --- The unit enters in the normal operation and container inside temperature begins to fall. ---
- f. When return air temperature to the evaporator falls to 0.5° C above the preset temperature, (preset temperature plus 0.5° C), G₁ relay (high limit alarm) of 23A is turned on and OL (orange lamp) lights up by G₂ \rightarrow G₁ (indicating that inside temperature is with in range).
- g. When the temperature falls lower than the preset temperature, Y₂ relay is turned off (continuity between 9 and 11 of terminal B of 23A is lost); 2X₄ becomes unenergized; 20S₁ and 20S₂ close; and "pump down" starts.
- h. When the low pressure falls down to 40 cmHgV, LP of 63HL is turned off; 88C becomes unenergized; MC, MF2-1, 2, and 3, etc. stop; and frozen operation stops.


- i If the temperature falls down to 2°C below the preset temperature after MC (compressor) has stopped, G₂ relay is turned off after a delay of approximately 20 seconds and OL goes out (low limit alarm).
- j When the temperature rises to the preset temperature minus $0.5^{\circ}C$, G_2 relay is turned on and OL lights up.
- k. When the temperature rises higher than the preset temperature. Y₂ relay is turned on and frozen operation starts by steps "c" through "e" described above.
- If the temperature rises further up to the preset temperature plus 2°C, G₁ relay is turned off after a delay of approximately 20 seconds and OL will go out (high limit alarm).

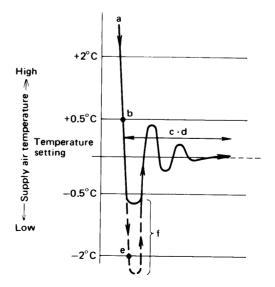
Note: t₁ and t₂°C (point of Y₂ relay function) are determined depending on temperature and time by means of P.I.D. (P: proportional action, l: integral action, D: derivative action) of the controller.



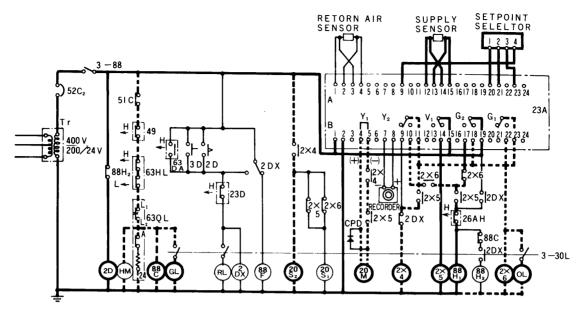
Flow of refrigerant during frozen operation

Flow of refrigerant during chilled operation

3.4 Chilled operation - capacity control


- Chilled operation is performed when the preset temperature is -5.0°C or higher. U₁ relay (which switches over frozen and chilled modes) of 23A is turned on, 2X₅ relay becomes energized and the circuit of the chilled mode is made.
- (2) Chilled operation is controlled sensing supply air temperature from the evaporator; i.e., the modulating control valve (20M) controls the amount of hot gas to be bypassed continuously while a capillary tube controls the liquid refrigerant.
- a. The operation is the same with that (step "a" ~ "e") of the frozen mode while supply air temperature falls to the preset temperature plus 0.5°C from the pull down period.
- b. When the supply air temperature reaches the preset temperature plus 0.5°C, G₁ relay is turned on (OL lights), 2X₆ relay gets energized, 20S₁ closes; and, the capillary tube controls the liquid refrigerant.
 (20S₁ remains closed after that.)
- c. As the supply air temperature rises to the preset value, Y₁ voltage rises slowly from zero, which opens the modulating control valve (20M) gradually, permitting hot gas to flow through.
- d. After the temperature has been reached the preset temperature, it takes about an hour for the unit to reach a steady state. (the opening of 20M is nearly fixed; i.e., the flow of bypassing hot gas is nearly constant.) (This interval varies somewhat with the preset and ambient temperatures.) During this time, the valve changes its openings to control the flow of hot gas until the supply air temperature becomes stable.

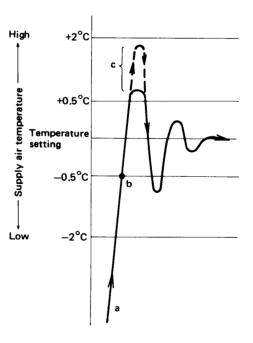
e. Depending on operating conditions (such as when the differece between the ambient and preset temperature is small), G₂ relay is turned off and lamp OL goes out (after a delay of approximately 20 seconds) if the supply air temperature becomes -2°C lower than the preset temperature before stabilizing hot gas bypass volume (low limit alarm).

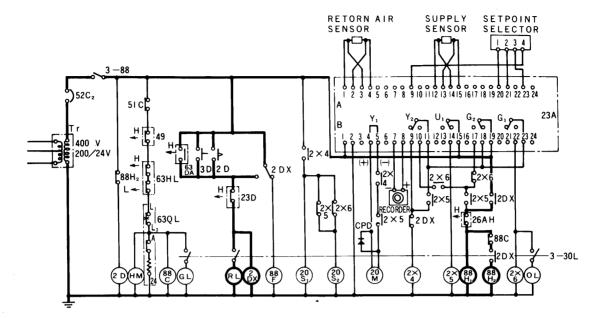

At the same time, $2X_4$ relay is turned off; $20S_2$ and 20M are closed, after "pump down", the compressor stops to prevent over-cool.

f. If Y_2 relay has been turned off during step "e" above, the electric heaters (H_1 and H_2) may be turned on tentatively, but they will be turned off when the temperature rises.

(Refer to the section on Heating Operation for the details.)

3.5 Heating operation

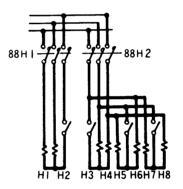



- Heating operation will be performed only when the preset temperature is -5.0°C or higher as in the chilled mode. Inside temperature will be controlled, sensing the supply air temperature.
- (2) There are three modes in the heating operation.
- Pull up Heated only by electric heaters
- Steady state Heated by hot gas bypass and electric heaters (when large heating capacity is needed)
 - Heated only by hot gas bypass (when small heating capacity is enough)

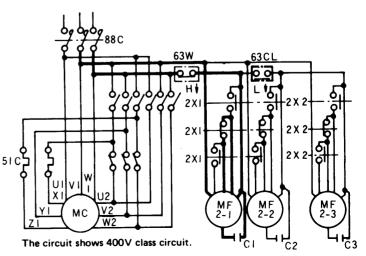
One of these three modes will be automatically selected according to load conditions.

- a. Pull up (The circuit indicated with bold lines in the sequence diagram functions)
 Until the supply air temperature rises to the preset temperature minus -0.5°C, G₂ relay is turned off, which unenergizes 2X₆, energizes the heater relay (88H₁) and operates the electric heaters (H₁ and H₂). (compressor stops.)
- b. When the supply air temperature raises the preset temperature minus 0.5° C, G₂ relay is turned on and OL lamp light up. At the same time, $2x_6$ relay becomes energized,, so $88H_1$ is energized by Y₂ relay. Since G₂ relay is on, $2x_4$ relay is energized, $20S_2$ is open, and the compressor runs and heating starts with electric heaters and hot gas. (The circuit indicated by dotted lines in the sequence diagram functions.) Afterwards, operation will become stable as time afterwards, elapses.

c. If heating load is small as stated in step "b", the inside temperature will rise: Y₂ relay is operated (the function point varies depending on PID operation): 88H₁ becomes unenergized: and the heaters (H₁ and H₂) are turned off, and heating operation only with hot gas bypass is performed. (The circuit is the same as that of chilled operation in the sequence diagram.)

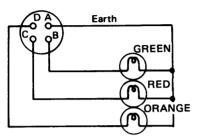


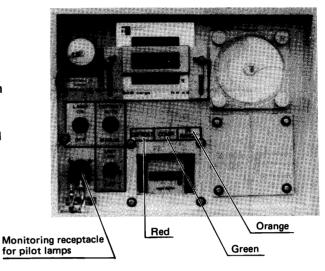
- (1) Defrosting operation starts based on the following three conditions.
 - The air pressure switch (63DA) is turned on when the pressure difference of air draft at the inlet and outlet of the evaporator becomes large with much frost developing on the evaporator coil.
 - Timer (2D) is turned on.
 - Manual defrost switch (3D) is turned on.
 If one of those stated above is on, defrost relay (2DX) becomes energized, and RL (red lamp) lights up.
- (2) When 2DX is energized:
- Electric heaters H₁ and H₂ are operated with 88H₁ energized.
- 20S₁ and 20M are closed with 2X₄ relay unenergized. After "pump down", the compressor stops; 88H₂ becomes energized and electric heaters H_{3~8} are operated. (Now all electric heaters H₁~H₈ are turned on.)


3.7 High pressure control

(1) The condensing pressure (high pressure) falls when the ambient temperature falls during air-cooled operation, and the lower pressure also falls accordingly. If operation is still continued in this condition, the low pressure switch will be turned off (LP of 63HL is turned off) and the compressor will stop so that the required refrigeration capacity is not available. To prevent the high pressure from falling, a pressure switch (63CL) (which controls the high pressure) stops two condenser fans (MF2-2 and 2-3) automatically when the high pressure falls to 7 kg/cm² (99.6 psi).

The circuit shows 200V class circuit


- (3) With 88H₂ energized, the evaporator fan stops and defrosting operation starts.
- (4) When the evaporator coil temperature rises to 7.2°C after having removed frost, defrost termination thermostat (23D) is turned off and 2DX becomes unenergized. Now defrosting operation is completed.



3.8 Pilot lamps and monitoring circuit

- (1) Three lamps which indicate operating mode are
 - mounted on the front panel of the control box.
 - Red : indicates defrosting mode
 - Green : indicates that the compressor is running
 - Orange : indicates that inside temperature is with in range (within $+/-2^{\circ}C$ of the preset temperature)

Receptacles for monitoring pilot lamp is also equipped and its connections is shown at below.

(2) How to judge operation state by pilot lamps and function of the components.

		Set	point selecte	or set above	-5.0°C (+2	3.0°F)
			—Air	cooled ope	ration	
	Part name	Coo	ling	Hea	ting	Defease
		Pull down	In range	Pull up	In range	Defrost
	Defrost –Red	x	х	х	×	0
Light	Comp. –Green	0	0	х	0	X
Light	In range – Orange	x	0	х	0	* X
	Comp. cond. fan motor	0	0	×	0	X
Magnetic	Evaporator fan motor	0	0	0	0	X
switch	Heater (88H1)	×	×	0	0	0
	Heater (88H2)	X	x	х	х	0
Solenoid va	Solenoid valve (20S1)		x	х	×	x
Solenoid valve (20S2)		0	0	X	0	X
Modulating	valve (20M)	X	0	х	0	x
Compresso	f	0	0	x	0	×

			elector set t — Air cool		
	Part name		oling		Water cooled operation
		Pull down	In range	Defrost	
	Defrost - Red	X	×	0	
Light	Comp. –Green	0	0	x	Water cooled condition is
	In range – Orange	x	0	* X	the same as air cooled except
	Comp. cond. fan motor	0	0	X	• Water press. switch (63W)
Magnetic	Evaporator fan motor	0	0	X	open
switch	Heater (88H1)	X	х	0	• Condenser fan motor
	Heater (88H2)	X	x	0	(MF2) de-energized
Solenoid va	Solenoid valve (20S1)		0	X	1
Solenoid valve (20S2)		0	0	X	· · · · ·
Modulating	valve (20M)	X	x	×	
Compressor	·	0	0	×	

Notes 1. O: Energized or ON, X: De-energized or OFF

4. Major components and maintenance

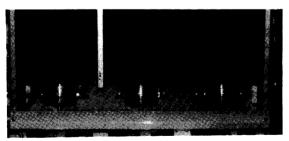
4.1 Components related with refrigeration circuit 4.1.1 Compressor

The compressor is of a semi-hermetic type with built-in motor so that there are few places where leakage of refrigerant may occur. The reversible lubricating ail pump used produces the required oil pressure regardless of the direction of rotation of the built-in motor.

(a) Replacement

Remove the compressor by the following procedure.

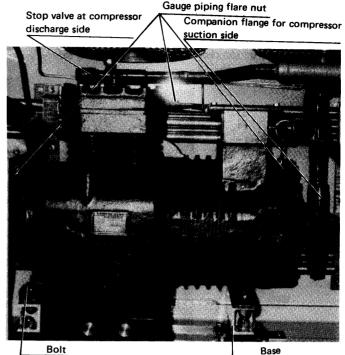
- 1 Remove the front and base plates and protective bar of the cable stowage.
- 2 Remove the discharge stop valve, suction stop valve gauge piping flare nut (compressor side) and cable.
- 3 Remove four bolts (two on each side) fastening the compressor and base.
- 4 Take out the compressor to the front of the unit.

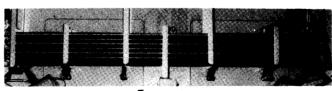

Install the compressor according to reverse procedure given above. When tightening the bolts, refer to the torque values listed.

4.1.2 Air-cooled condenser and evaporator

The "cross fin" coil has special corrugated fins. They are compact and very efficient in producing uniform heat exchange efficiency.

(a) Maintenance

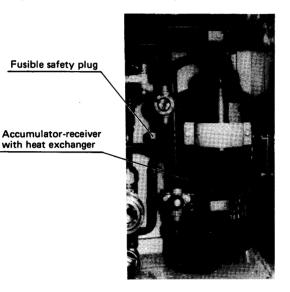

Service the air-cooled condenser after removing the air suction grille. Service the evaporator after removing the air return grille or the access panels from outside.



Air cooled condenser

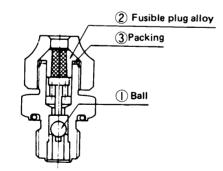
4.1.3 Water-cooled condenser

Of the tube-in-tube type in which cooling water flows in the inner tube while the refrigerant flows between the outside wall and the wall of the inner tube. Since special fins are fitted, the condenser is compact and light.



Evaporator

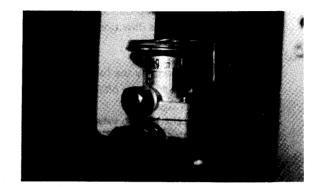
4.1.4 Accumulator-receiver with heat exchanger


Consists of the accumulator, receiver, and heat exchanger, which are encased in a vertical cylindrical construction; i.e. the heat exchanger passes through the accumulator from its top to the bottom and reaches to the receiver.

This construction reduces heat loss. A fusible safety plug is fitted to the receiver body.

(a) Replacement procedure of the fusible safety plug

When pressure rises abnormally in the system, the fusible safety plug melts itself, so if the fusible safety plug is melted, check possible causes thoroughly. When fusible safety plug functions, the centre of the fusible safey plug alloy ② melts, from which the refrigerant escapes. When the flare nut is removed, ① (ball) will come out under pressure and block the passage of the refrigerant outlet, which prevents the refrigerant from escaping and also the air from entering. Thus, refrigerant loss is extremely minimized.



Construction of fusible safety plug

Insert a new (2) by means of (3), and tighten the flare nut.

4.1.5 Expansion valve

The externally equalized expansion valve which is fitted before the evaporator and senses over-heat degree of leaving evaporator refrigerant and controls flow of the refrigerant automatically according to operating conditions. The expansion valve with MOP (motor overload protection) is adopted to protect the compressor motor from overload.

"CAUTION" Whenever adjusting and replacing the expansion valve, the unit should be isolated from the mains supply for safety.

(a) Adjusting the expansion valve

There are two methods to adjust the expansion valve; i.e. one is the adjustment based on the suction operation standard and the other is that based on the frost conditions on the compressor.

- (1) Adjustment based on the suction operation pressure
- 1) Conform that the predesigned volume of the refrigerant has been charged.
- Attach a pressure gauge to each gauge port and operate the refrigeration unit, maintaining inside temperature at -18°C (-0.4°F). (See connecting of pressure gauge).
- When inside temperature comes to the preset temperature, compare the suction pressure reading with the standard pressure. (See Standard operation pressure curve)
- 4) If suction pressure reading differs with the standard pressure, adjust the expansion valve as stated below.
- 5) After loosening the clamp screw, turn the adjusting screw.
- 6) Note that pressure will not change after a certain lapse of time.
- (2) The adjustment based on frost stated on the compressor.
 - 1) Refer to the caution for adjustment of expansion valve as above. At this time, inside temperature should be maintained to $-18^{\circ}C(-0.4^{\circ}F)$.
- 2) Regulate the adjusting screw as stated below based on frost state on the suction pipe and the stop valve of the compressor.
- Whether or not the adjustment required is judged by frost state of the flange on the suction side of the suction valve.
- 4) However note that frost state differs with ambient air conditions (temperature and humidity).

Adjusting points for expansion valve

Adjusting screw	Turning	direction	Operation state
Adjusting screw of	Clockwise	\bigcirc	Suction pressure is higher than the standard pressure (Frost forms on the suction pipe rather than the suction flange of the stop valve). Clockwise rotation of the adjusting screw decreases running pressure.
expansion valve	Counter- clockwise	\bigcirc	Suction pressure is lower than the standard pressure (frost forms on the compressor side rather than the suction flange of the stop valve). Counterclockwise rotation of the adjusting screw increases running pressure.

- (3) Countermeasures after operation
- Remember the original setting of the expansion valve. If any change is found with the setting after adjustment of the expansion valve, return the adjusting screw to the original position, as trouble occured caused by other reasons.
- 2) When the adjusting screw is returned to its original position, firstly turn it passing the original position and then return it to the original position.
- After adjustment, be sure to tighten up the clamp screw and cap it to prevent the refrigerant from leaking.
- 4) After completion of the adjustment, operate the unit, keeping inside temperature at $-18^{\circ}C$ ($-0.4^{\circ}F$) and confirm that low pressure does not go down below 0 kg/cm²G (0 PSIG).

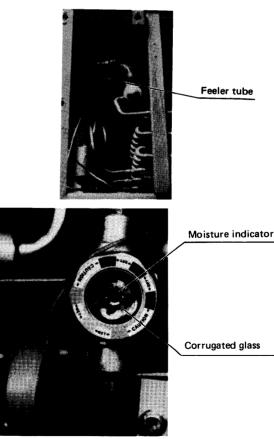
(b) Replacement

For replacement of the expansion valve, remove the access panel located on the front of the unit or by removing the evaporator bulkhead inside the container, and the drain pan back plate located at the left side.

- Remove the feeler tube, equalizing pipe flare, and fastening bolts. (To replace the cage alone, there is no need to remove the feeler tube.)
- 2) Remove the power assembly, cage, and packing.
- 3) Be sure to install a new packing when replacing it.

4.1.6 Liquid/moisture indicator

This indicator permits checking of flow of the refrigerant and moisture content in the refrigerant.

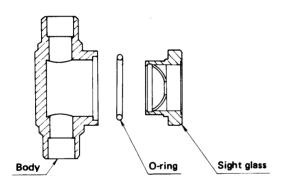

(a) Moisture content

The indicator indicates moisture content by the color at the center of the window.

Color	State
Deep blue	Dry
Orange	Wet (moisture contained)

Note: The indicator may appear orange if it has been exposed to gaseous refrigerant for a long time.

(b) Flow of the refrigerant


- When the liquid refrigerant is sealed, bubbles on the sight glass disappear.
- Check

Operation	Indicator state
At start	Bubbles appear but liquid refrigerant is sealed in 30 minutes to an hour after starting.
During operation	Bubbles may appear more or less.

If bubbles develop continuously, the refrigerant is possibly running short.

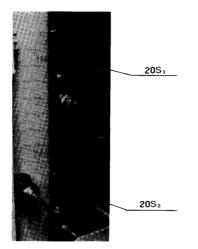
(c) Replacement

- 1) Put the system in "pump down" state.
- 2) Turn the sight glass counterclockwise, and remove it together with the O-ring.
- 3) Apply refrigeration oil to the new O-ring, and fasten the sight glass with torque of 70 ±5 kg-cm.
 (Do not apply excessive torque, or the O-ring will break.)

4.1.7 Dryer

This removes moisture and dust from the refrigerant while it is circulated. Replace the dryer if it does not remove moisture or is clogged.

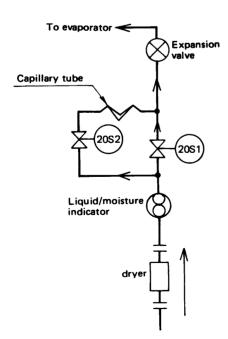
When installing the new dryer, follow the directions given on the nameplate and do not make any mistake about the direction of the dryer.


(a) Replacement

- 1) In "pump down" state (see Service), close the compressor suction stop valve.
- 2) Remove the flange bolts before and behind the dryer and replace the dryer with a new one as quick as possible. At this time, be careful not to lose the O-ring on the flange.
- 3) Be careful not to get air into the piping on the solenoid valve side while removing the dryer.
- 4) After reattachment of the dryer, open the stop valve a little to vent the air in the dryer from the flange on the solenoid valve side and then close it at once.
- 5) Loosen the flange on the other side, forcedly turn off the low pressure of the dual pressure switch, turn on the master control switch and open the solenoid valve only to vent the air.
- 6) After completion of the work, restore the stop valve to its original state and then inspect the system for gas leakage. Confirm no gas leakage is found

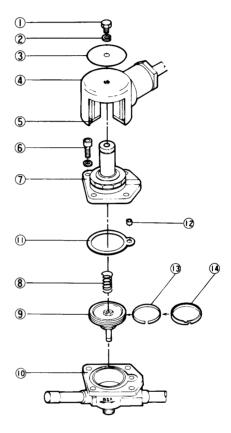
4.1.8 Solenoid valves

There are two solenoid valves (20S1 and 20S2) in the liquid line. They operate as follows according to operating mode.


(a) During frozen mode

Both 20S1 and 20S2 are open during operation. When stopping the compressor by the controller, they are closed and stop flow of the refrigerant, performing "pump down".

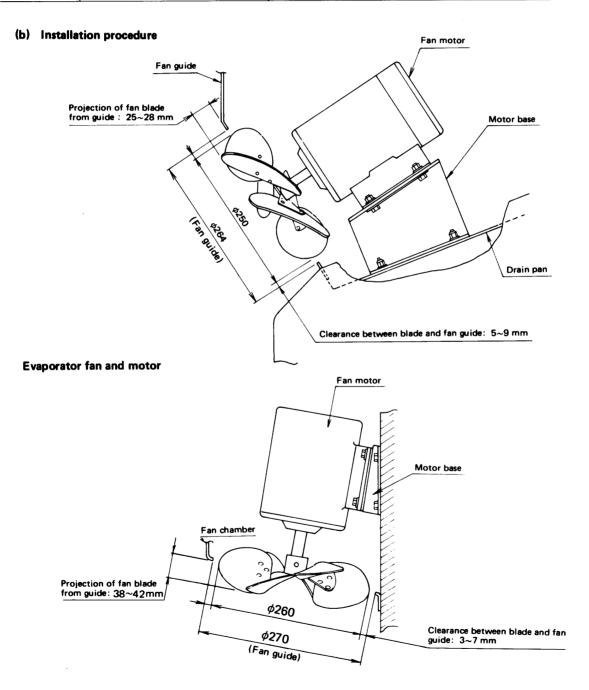
(b) During chilled mode


The two valves are open during "pull down". When the supply air temperature falls to the preset temperature plus 0.5°C, 20S1 alone is closed by directions of the controller. The refrigerant then flows through the capillary tube via 20S2 (liquid control).

Both 20S1 and 20S2 are open when the solenoid is energized and closed when not energized.

(c) Disassembly

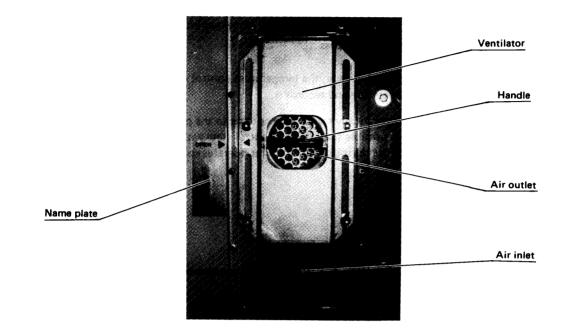
- The structure of the solenoid valve is shown at below. (For disassembly, checking, and reassembly, refer to this diagram.)
- When brazing a pipe to the valve, cool the valve body with a wet cloth. (It is not required to disassemble the valve. Remove the coil ass'y from the body.)
- During reassembly, tighten the four bolts x4 with torque of 70-80 kg-cm.


- Parts name No.
- Set bolt
- 2 Spring lock washer
- 3 Name plate
- 4 Coil ass'y
- 5 Retaining plate
- 6 Set bolt
- 1 Cover ass'y
- 8 Spring
- 9 Piston Valve body
- 10 \bigcirc Packing
- 12
- Sleeve **13**
- Inner ring 1 **Piston ring**

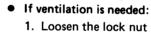
4.2. Components related with the air system

4.2.1 Fans and motors

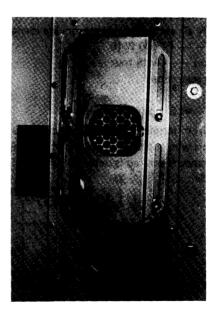
(a) Specifications


		Evaporator	Condenser	
Fan	Туре	propeller fan	propeller fan	
	Number of blades	6 pcs.	6 pcs.	
	Blade diameter	φ250	<i>\$</i> \$	
Motor	Туре	Single-phase, squirrel-cage induction motor		
	Motor output (number of poles)	465W (2P)	60W (4P)	
	Capacitor	Built-in	Separate	
	Bearing	Ball bearing, 6203 contactless type, rubber shiel		

Condenser fan and motor

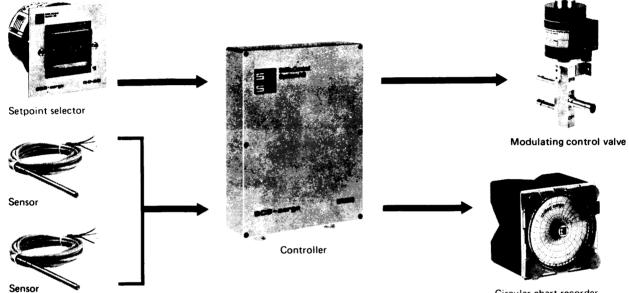

4.2.2 Ventilator

(a) View


(b) Operation

• If ventilation is not needed: Set the handle to CLOSED.

- 2. Set the handle to FUII OPEN
- 3. Tighten the lock nut

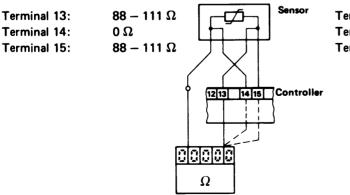

4.3 Temperature control system

This unit performs temperature control in three modes.

- I Frozen operation: compressor on-off control: Return air temperature is controlled (return air sensor).
- П Chilled-operation: capacity control by hot gas bypass
- III Heating operation: capacity control by hot gas bypass and electric heater control.

Selecting one of these operating modes automatically, the temperature control system controls the inside temperature according to the preset temperature and records it.

- The supply and return sensors will be automatically switched according to the preset temperature.
- Adoption of a check instrument makes it possible to know the control state easily.
- The recorder records controlled temperature during operation. This operates continuously for about a year with a single battery.

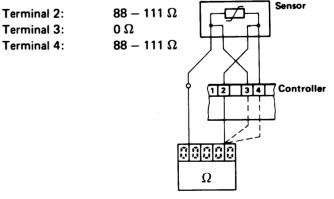


4.3.1 Sensor FC-KTRP

- The supply air and return air sensors are identical.
- Element --- PT100 Ω (0°C)
- Connection --- with four leads
- (a) Checking operation

Supply air sensor

Remove wire from terminal 12 and connect measuring instrument to this wire and to terminal 13 of terminal block A. If the resistance measured is between 88 and 111 Ω , the sensor is in order.

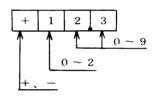


Supply air temperature is controlled (supply air sensor).

Circular chart recorder

Return air sensor

Remove wire from terminal 1 and connect the measuring instrument to this wire and to terminal 2 on terminal block A. If the resistance measured is between 88 and 111 Ω the sensor is in order.

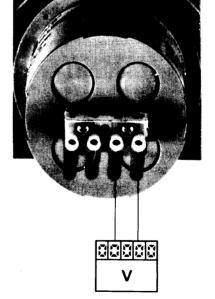

• Temperature vs. resistance table

Temperature °C	$\begin{array}{c} \text{Resistance} \\ \Omega \end{array}$	Temperature °C	$\frac{\text{Resistance}}{\Omega}$	Temperature °C	$\begin{array}{c} \text{Resistance} \\ \Omega \end{array}$	Temperature °C	Resistance Ω
-30	88.17	- 9	96.46	5	101.95	18	107.02
-25	90.15	- 8	96.86	6	102.34	19	107.40
-20	92.13	- 7	97.25	7	102.73	20	107.79
-19	92.52	- 6	97.65	8	103.12	21	108.18
-18	92.92	- 5	98.04	9	103.51	22	108.57
-17	93.31	- 4	98.43	10	103.90	23	108.96
-16	93.71	- 3	98.82	11	104.29	24	109.35
-15	94.10	- 2	99.22	12	104.68	25	109.73
-14	94.49	- 1	99.61	13	105.07	26	110.12
-13	94.89	0	100.00	14	105.46	27	110.51
-12	95.28	1	100.39	15	105.85	28	110.90
-11	95.68	2	100.78	16	106.24	29	111.28
-10	96.07	3	101.17 101.56	17	106.63	30	111.67

4.3.2 Setpoint selector PC-RP30/30

Temperature setting is of digital indication. Press the buttons arranged both upper and lower of each indication for setting.

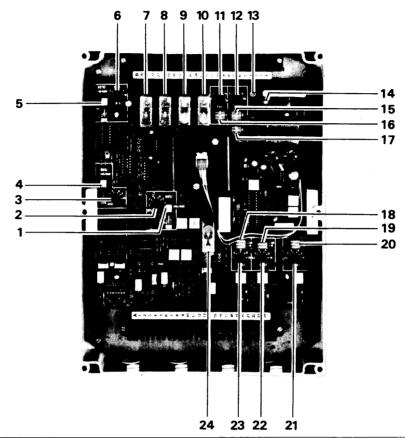
Temperature range \ldots -29.9 ~ +29.9 °C


a. Operating check

- 1. Switch on controller (Unit ON-OFF switch)
- Measure -15 V DC ± 0.5 V, terminal 3 (↓↓) -1
- 3. Measure +15 V DC \pm 0.5 V, terminal 3 (\downarrow) -2

If the measured values agree, the voltage supplied to the setpoint selector is correct.

4. Setpoint adjustment


 $-29.9 \ ^{\circ}C = 0.017 \ V$ $0 \ ^{\circ}C = 5.000 \ V$ Terminal 3 (\checkmark) -4 $+ 29.9 \ ^{\circ}C = 9.983 \ V$ Tolerance $\pm 0.017 \ V$

4.3.3 Controller RFC-92GS

(a) Parts name

According to the preset temperature, one of two sensors (supply or return) is selected to control the modulating control valve, compressor, and electric heaters and gives alarm at high and low limits of the inside temperature. In addition, according to controlled temperature, output is delivered to the recorder.

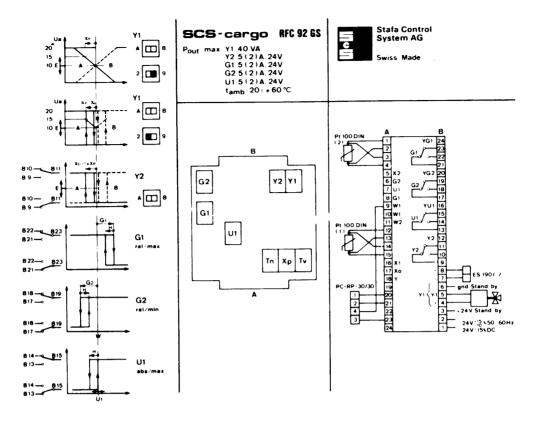
ltem	Description		Factory setting
1	Operating mode change-over cut-in point potentiometer	U1	41.7 % (–5.0°C)
2	Operating mode change-over switching differential potentiometer	н	1 % (0.6 K)
3	High limit switching differential potentiometer	н	2.5 % (1.5 K)
4	High limit cut-in point potentiometer	G1	3.33 % (+2°C)
5	Low limit cut-in point potentiometer	G2	3.33 % (−2°C)
6	Low limit switching differential potentiometer	н	2.5 % (1.5 K)
7	High limit relay	G1	
8	Low limit relay	G2	
9	Mode change-over relay	U1	
10	Y2 output relay	Y2	
11	Y2 output cut-in point potentiometer	E	11 V
12	Y1 output cut-in point potentiometer (modulating)	E	15 V
13	Spare transistor fuse	BC 107	
14	Transistor fuse		
15	A/B direction of operation change-over switch	Y1	A
16	A/B direction of operation change-over switch	Y2	A
17	2/9 operation change-over switch*	Y1	9
18	Integral action tens selector dial	I x 10	I x 10
19	Proportional band tens selector dial	xp x 10	out
		x 100	out
20	Derivative action and tens selector dial	D x 10	D
21	Derivative action preset time potentiometer	T _V [s]	10
22	Proportional band potentiometer (% of measuring range)	xp [%]	8
23	Integral action reset time potentiometer	Tn [s]	6
24	Recorder output change-over relay		

*2 (on/off), 9 (modulating)

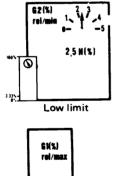
(b) Temperature-voltage conversion table

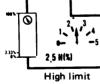
The temperature on the right and preset temperature can be converted to voltage with the terminal board of the controller or the receptacle of the checker.

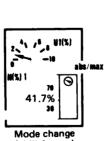
- Examples: 1. Supply air temperature (X1) is 0°C when voltage is 5V across A24-A16 of the terminal board (F-H of the receptacle).
 - 2. The change-over point (U1) between chilled and frozen modes are switched over is -5.0°C when voltage is 4.166V across A24-A7 of the terminal board (F-L of the receptacle).

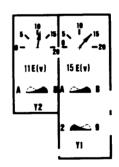

Description		
Supply air temp. X 1	н	A16
Return air temp. X 2	G	A17
Setpoint w1	J	A10
High limit G1	κ	A8 — _ []]
Low limit G2	Μ	A6 — _
Change-over U1		Ţ
Chilled/Frozen	L	A7 —
لد Earth	F	A24

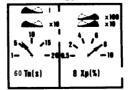
Temperature/voltage conversion table


°C	V	°C	V	°C	v
-30	0	-10.0	3.3333	10.0	6.6666
29.5	0.0833	- 9.5	3.4166	10.5	6.750
-29	0.1666	- 9	3.5	11	6.8333
28.5	0.250	- 8.5	3.5833	11.5	6.9166
-28	0.3333	- 8	3.6666	12	7.0
-27.5	0.4166	- 7.5	3.750	12.5	7.0833
-27	0.5	- 7	3.8333	13	7.1666
-26.5	0.5833	- 6.5	3.9166	13.5	7.25
-26	0.6666	- 6	4.0	14	7.3333
-25.5	0.750	- 5.5	4.0833	14.5	7.4166
-25	0.8333	- 5	4.1666	15	7.5
-24.5	0.9166	- 4.5	4.25	15.5	7.5833
-24	1.0	- 4	4.3333	16	7.6666
-23.5	1.0833	- 3.5	4.4166	16.5	7.75
-23	1.1666	- 3	4.5	17	7.8333
-22.5	1.25	- 2.5	4.5833	17.5	7.9166
-22	1.3333	- 2	4.6666	18	8.0
-21.5	1.4166	- 1.5	4.750	18.5	8.0833
-21	1.50	- 1	4.8333	19	8.1666
-20.5	1.5833	- 0.5	4.9166	19.5	8.25
-20	1.6666	± 0	5.0	20	8.3333
-19.5	1.750	0.5	5.0833	20.5	8.4166
—19	1.8333	1	5.1666	21	8.5
-18.5	1.9166	1.5	5.25	21.5	8.5833
-18	2.0	2	5.3333	22	8.6666
-17.5	2.0833	2.5	5.4166	22.5	8.750
-17	2.1666	3	5.5	23	8.8333
-16.5	2.25	3.5	5.5833	23.5	8.9166
-16	2.3333	4	5.6666	24	9.0
-15.5	2.4166	4.5	5.75	24.5	9.0833
-15	2.5	5	5.8333	25	9.1666
-14.5	2.5833	5.5	5.9166	25.5	9.25
-14	2.6666	6	6.0	26	9.3333
-13.5	2.750	6.5	6.0833	26.5	9.4166
-13	2.8333	7	6.1666	27	9.5
-12.5	2.9166	7.5	6.25	27.5	9.5833
12	3.0	8	6.3333	28	9.6666
-11.5	3.0833	8.5	6.4166	28.5	9.75
-11	3.1666	9	6.5	29	9.8333
-10.5	3.25	9.5	6.5833	29.5	9.9166
_				30	10.0

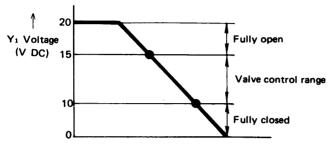

[Note]


for temperature sensor output X1, X2 setpoint switch output w1, settings G1, G2, U1. $U/^{\circ}C = \frac{10[V]}{60[^{\circ}C]} = 0.16667 V/^{\circ}C$

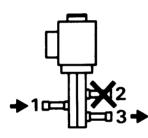

ON COFF



Integral time Propotional band



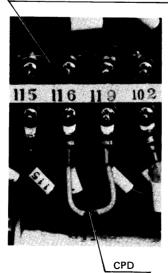
4.3.4 Modulating control valve M3F15L


Output (Voltage Y_1) of the controller drives this valve. As a two-way valve, this controls the flow of hot gas bypass continuously. The valve opening may be read from voltage Y_1 with a checker.

LOW - Temperature > HIGH

(a) Valve position

- De-energized period: 1-3 closed
- The coil resistance of the valve is approximately 20Ω at 21°C.



(b) CPD (contact protective diode)

A CPD is inserted in the valve circuit. This protects the relay contacts from surge current which flows when the circuit is opened and closed. The CPD is fitted to the terminal of the control box.

$\begin{array}{c} Y_1 \\ B \\ (+) \\ (+) \\ (-) \\ 0 \\ 2 \times 4 \\ 0 \\ 2 \times 5 \\ \hline \\ 20 \\ M \\ valve \end{array}$

The terminal of the control box

4.3.5 Recorder ES190/30

With output of the controller, this records return air temperature during frozen mode, and supply air temperature during chilled and heating modes automatically.

A battery is used as its power source and is capable of continuous operation approximately for a year. Be sure to change chart papers in accordance with operation modes.

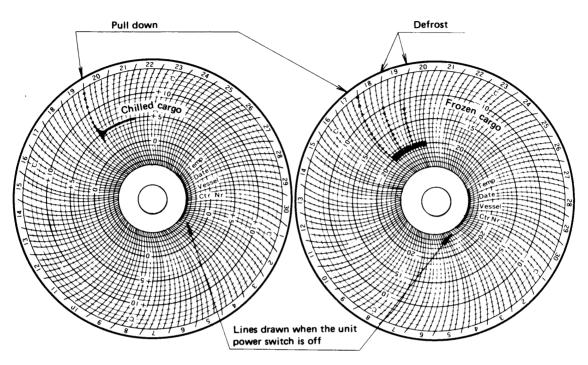
- Recording range while frozen operation: -25°C~-0.5°C
 while shilled and bestime
 - − while chilled and heating operation: −5.0°C~+15°C
 - Power source Lithium battery IEC R6"AA" 3.4V
- Record
- One dot/5 minutes from the backside of chart paper.
- 1 round/30 days.

(a) Adjustment

The measuring system must not be energized during calibration.

Turn the calibrating screw with a screw driver until the recorder needle is exactly level with the innermost scale ring. Turn the central axis anticlockwise until the recorder slot is covered.

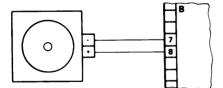
Mount the recorder cover and wait until the measuring system is activated (audible impact of recorder needle). The dot produced must lie exactly on the innermost circle line. If there is any deviation, further adjustment is necessary.


Recording stylus

-Groove

Adjusting screw (turn clockwise to raise (temperature indication)

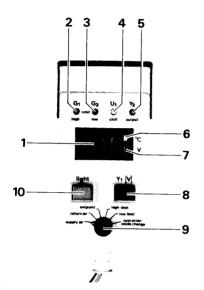
(b) Examples of recording


Recording of the recorder is made by one dot per 5 minutes. Recording while temperature fluctuation is repid such as pull down or defrost becomes a dotted line as shown in the figure below.

(Chilled operation: Setting +5°C)

(Frozen operation: Setting -20° C)

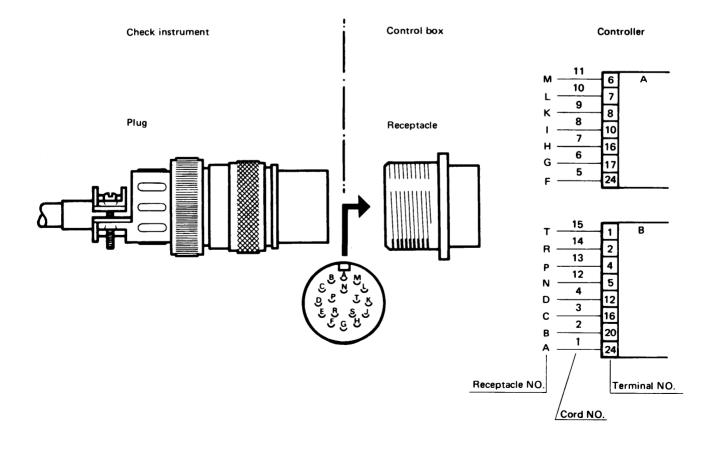
(c) Temperature recorded and controller output (voltage)


Conversion table °C/V DC

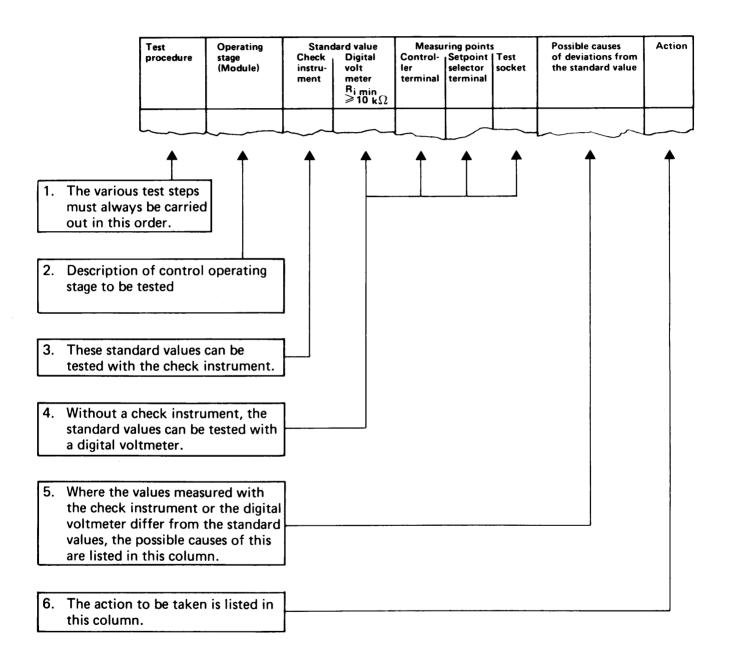
Return ai	r	Supply air	
°C	V	°C	V
-25	0	- 5	0
24	0.5	- 4	0.5
-23	1	- 3	1
-22	1.5	- 2	1.5
-21	2	- 1	2
-20	2.5	0	2.5
-19	3	+ 1	3
-18	3.5	+ 2	3.5
-17	4	+ 3	4
-16	4.5	+ 4	4.5
-15	5	+ 5	5
-14	5.5	+ 6	5.5
-13	6	+ 7	6
-12	6.5	+ 8	6.5
-11	7	+ 9	7
-10	7.5	+ 10	7.5
- 9	8	+ 11	8
- 8	8.5	+ 12	8.5
- 7	9	+ 13	9
- 6	9.5	+ 14	9.5
- 5	10	+ 15	10

4.3.6 Check instrument

Connect the plug of the check instrument to the receptacle on the front panel of the control box, and check the following, operating the unit.


Note: When the check instrument is used do not subject it to direct sun light. Further, each inspection and adjustment should be done after $10 \sim 20$ minutes energization.

- 1 Liquid crystal indication
- 2 Alarm temperature too high -- G1
- 3 Alarm temperature too low -- G₂
- 4 Chilled operation ---- U₁
- 5 Electrical heating "on" with chilled operation compressor "stop" with frozen operation } Y₂
- 6 Lamp for temperature indication -- °C
- 7 Lamp for voltage indication $V(Y_1)$
- 8 Modulating valve voltage button
- 9 Selector for:
 - Setting upper limit
 - Setting lower limit
 - Setting operating mode change-over point
 - Supply air temperature
 - Return air temperature
 - Setpoint

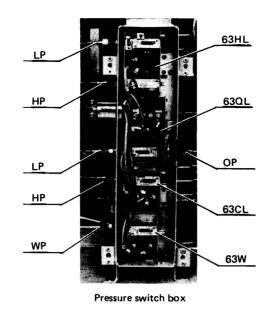

10 Scale illumination button

Note: $2 \sim 5$ signify the state when the lamp lights up

4.3.7 Checking operation of the controlling devices

Note: Before checking, operate the compressor for 10 minutes.

Test	Operating			Measuring points			Possible causes	Action
procedure	stage	Check instrument	Digital voltmeter Rimin ≥ 10kΩ	Control- ler terminal	Setpoint selector terminal	Test socket	of deviations from the standard value	
1	A/C power supply	Yellow "light" button depres- sed, display illu- mination ON					Controller and test socket disconnected	Check wires and connections
			24∨ +15 % −10 5060Hz	B1 B2			Mains switch off Control switch off Fuse defective	Check devices
2	DC power supply Power	Indicator lamp Y_2, U_1, G_1 or G_2 illuminates					Controller and test socket disconnected	Check wires and connections
	section		22V ⁺¹⁵ ₋₁₀ %	A24 B4			Rectifier defective	Replace controller board or rectifier
3	DC power supply Bridge	Selector on in "setpoint" position, indica- tion same as selected set- point Tolerance ± 0,3°C					Controller and test socket disconnected	Check wires and connections Measure with digital voltmeter as per test procedure 3a
3a			-15V ±0.05V +15V ±0.05V		3 (上) 1 3 (上) 2		Controller and setpoint selector disconnected	Check wires and connections Measure with digital volt- meter as per test procedure 3b
Зb			-15V ±0.05V +15V ±0.05V	A24 A20 A24 A22			DC supply defective Possible cause: short circuit with earth potential	Replace controller board Measure resistance betwee terminal A24 and ≢ Standard value:>600 kΩ
	Setpoint selector	Selector in "setpoint" position					Controller and test socket disconnected	Check wires and
4		Indication of same value as setpoint selector Tolerance ±0.3°C					Controller and setpoint selector disconnected	Measure with digital voltmeter as per test procedure 4a
4a			0.017V 9.983V DC see table "tempera- ture/volt- age con- vertion"		3 (上) 4		Setpoint selector	Replace setpoint selector
4 b			0.017V 9.983V DC see table "tempera- ture/volt- age con- vertion"	A24 A10		F J	Controller and setpoint selector disconnected	Check wires and connections
5	Supply air sensor (sensor signal X ₁)	Selector in "supply air" position Indication of same value as the temp. measured in the supply air (-30+30°C)					Disconnection	Measure with digital voltmeter as per test procedure 5a


Test	Operating	Operating Standard		t value Measuring poin		pints Possible causes		Action
procedure	stage	Check instrument	Digital voltmeter Rimin ≥ 10kΩ	Control- ler terminal			of deviations from the standard value	
			010V DC see table	A24 A16		F H	Controller and test socket disconnected	Check wires and connections
5a			"tempera- ture/voltage convertion"				Controller and sensor disconnected	Measure sensor resistance See table page "tempera- ture VS. resistance" Replace defective sensor
								If the sensor is in order, replace controller board
6	Return air sensor (sensor sig- nal X ₂)	Selector in "return air" position. Indication of same value as the temp. measured in the return air (-30+30°C)					Disconnection	Measure with digital voltmeter as per test procedure 6a
			010V DC see table	A24 A5		F G	Controller and test socket disconnected	Check wires and connections
6a			"tempera- ture/voltage convertion"				Controller and sensor disconnected	Measure sensor resistance See table page ''tempera ture VS. resistance'' Replace defective sensor
								If the sensor is in order, replace controller board
	Controller output Y ₁ (to control valve)	Depress blue button"Y ₁ [v]"					Connection between controller and test socket reversed	Check wires and connections
7	Set setpoint selector at 29°C	Indication 0V					Controller and test disconnected	Check wire and connections
	Set setpoint selector at +29°C	Indication 1520V DC						Measure with digital voltmeter as per test procedure 7a
7a			020V DC	B4(+) B5		P (+) N	External short circuit between terminals B4 and B5 on controller	Rectify short circuit (protective diode (CPD), see "MC valve"
							Transistor fuse defective	Replace transistor fuse see ''controller-b''
	Controller output Y ₂ (on/off)							Check wires and Measure with digital voltmeter as per test procedure 8a
8	Set setpoint selector at +29° C	Lamp Y ₂ illuminated					Controller and test socket disconnected	
	Set setpoint selector at -29° C	Lamp Y ₂ off					Connection between and test socket reversed	

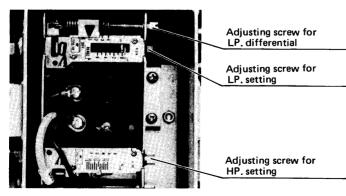
Test	Operating	Standard	l value	M	easuring po	pints	Possible causes	Action
procedure	stage	Check instrument	Digitał voltmeter Rimin ≥ 10kΩ	Control- ler terminal		Test socket	of deviations from the standard value	
	Set sepoint selector at -29°C		0V			P D	Connection between controller and test socket reversed	Check relay Y ₂ -29°C = B11-B9 (contact closed)
8a				B4 B12			Controller defective	+29°C = B11-B10 (contact closed)
0a	Set setpoint selector at +29°C		22V DC +15 _% –10 [%]			P D	Controller and test socket disconnected	Check wires and connections
				B4 B12			Controller defective	Replace controller board
	Alarm unit G ₁ "tempera- ture"	Selector in high limit position					Out of calibration	Calibrate high limit according to test procedur 9b
9	too high	Indication 2° C higher then setpoint Tolerance ±0.3° C					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at -29° C	Lamp G ₁ illuminated after approx. 20 s					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at +29° C	Lamp G_1 off					Connection between controller and test socket reversed	Measure with digital voltmeter as per test procedure 9a
	Set setpoint selector at -29°C		0 V after approx 20s			P A	Connection between controller and test socket reversed	Test relay G1"controller-t -29°C = B23-B21 (contact close)
								+29°C = B23–B22 (contact closed)
9a				84 824			Controller defective	Check wises and connections
	Set setpoint selector +29°C		22V DC +15 –10			P A	Controller and test socket disconnected	Replace controller board
	+29 C		-10	B4 B24			Controller defective	
9ь	Limit value setting	Selector in "high limit" position					Limit value shifted	Turn potentiometer G1 until the check instrument shows +2°C "controller-b
	Set setpoint selector at 0.0° C	Indication +2°C	5.333V DC	A24 A8		FK		Turn potentiometer G1 until the digital voltmeter shows 5.333 V
	Alarm unit G ₂ "tempera- ture" too low	Selector in "low limit" position					Out of calibration	Calibrate low limit according to test procedu 10b
10		Indication 2° C lower then setpoint Tolerance ±0.3° C						
	Set setpoint selector at +29°C	Lamp G2 illuminated after approx. 20 s					Controller and test socket disconnected	Measure with digital voltmeter as per test procedure 10a
	Set setpoint selector at -29° C	Lamp G2 off					Connection between controller and test socket reversed	Check wires and connections

Test	Operating			easuring po	oints	Possible causes	Action	
procedure	stage	Check instrument	Digital voltmeter Rimin ≥ 10kΩ	Control- ler terminal	Setpoint selector terminal	Test socket	of deviations from the standard value	
	Set setpoint selector at -29°C		22V DC +15 % -10 [%]			P B	Controller and test socket disconnected	Check relay G2 "controller-b" -29.9°C = B19-B18 (contact closed) +29.9°C = B19-B17 (contact closed)
10a				B4 B20			Controller defective	Check wires and connections
	Set setpoint selector at +29° C		OV after approx. 20s			P B	Connection between controller and test socket reversed	Replace controller board
				B4 B20			Controller defective	
105	Limit value setting	Selector in "low limit" position					Limit value shifted	Turn potentiometer G2 until the check instrument shows –2°C
10b	Set setpoint selector at 0.0° C	Indication -2°C	4.667V DC	A24 A6		F M		Turn potentiometer G2 until the digital voltmeter shows 4.667V
	Operating mode change over U ₁	Selector switch in operation mode change position					Out of cablibration	Cabibrate according procedure 11b
11		Indication -5.0°C Tolerance ±0.3°C						
	Set setpoint selector at -29°C	Lamp U ₁ off					Connecting between controller and test socket reversed	Measure with digital voltmeter as per test procedure 11a
	Set setpoint selector at +29°C	Lamp U ₁ illuminated					Controller and test socket disconnected	Check wires and connections
	Set setpoint selector at +29° C		22V DC +15 % 10 [%]			P C	Controller and test socket disconnected	Check relay U1 +29° C = B15—B14 (contact closed) -29° C = B15—B13 (contact closed)
11a				84 816			Controller defective	Check wires and connections
	Set setpoint selector at -29° C		0V			P C	Controller and test socket connections reversed	Replace controller board
				B4 B16			Controller defective	
11b	Mode change-over setting	Selector in "operation" mode change position					Shift in mode change value	Turn potentiometer U1 until the check instrument shows –5.0°C
		Indication —5.0°C	4.1666V DC	A24 A7		FL		Turn potentiometer U1 until the digital voltmeter shows 4.1666V

4.4 Description on electrical and functional parts.

4.4.1 Dual pressure switch (63HL) This stops the compressor when the pressure has risen or fallen excessively in the unit. The high pressure may rise above preset of HP if the condenser fan fails or cooling water does not circulate properly, etc. The low pressure may fall below preset of LP if "pump down" has been performed because the refrigeration circuit is blocked or the solenoid valves are closed. In these cases, the switch stops compressor.

LP : Low pressure

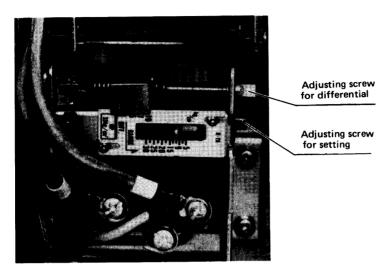

- HP : High pressure
- OP : Oil pressure
- WP : Water pressure

(a) Adjustment method

Adjust the switch by turning the adjusting screw as described below;

Adjusting points of dual pressure switch

	Adjusting screw	Ro	etary direction	Function
High Setting of pressure adjusting side screw	Setting of	Clockwise		Setting (OFF value) becomes high, and pressure at the stopping of the refrigeration unit becomes high.
	, ,	Counter- clockwise		Setting (OFF value) becomes low, and pressure at the stopping of the refrigeration unit becomes low.
Low Setting of		Clockwise		Setting (ON value) becomes low, and pressure at the starting of the refrigeration unit becomes low.
pressure side	adjusting screw	Counter- clockwise		Setting (ON value) becomes high, and pressure at the starting of the refrigeration unit becomes high.
Setting of adjusting screw for differential	-	Clockwise		Pressure difference between ON and OFF becomes large and difference between pressure on the starting and on the stopping becomes large.
		Counter- clockwise		Pressure difference between ON and OFF becomes closer and difference between pressure on the starting and on the stopping becomes closer.



Notes:

1) If it is necessary to adjust the adjusting screw for differential, be sure to adjust pressure setting first and then adjust differential.

2) After adjusting the adjusting screw, apply chemical to the bolt head to prevent the bolt from being loosened vibration.

4.4.2 High pressure control pressure switch (63CL) If the ambient temperature is low during air cooled operation, two out of three condenser fans are turned off so that the high pressure should not fall. (As for more details, refer to "high pressure control")

(a) Adjusting method

Adjust the adjusting screw as staged below.

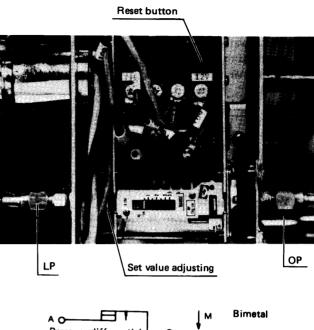
Adjusting points for high pressure control switch

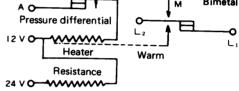
Adjusting screw	Turning	direction	Function
	Clockwise		Setting value (ON value) becomes low and fan speed increases
Adjusting screw for setting	Counter- clockwise		Setting value (ON value) becomes high and fan speed decreases
Adjusting screw	Clockwise		Pressure difference between ON and OFF becomes large and stopping period of certain fans is prolonged.
for differential	Counter- clockwise		Pressure difference between ON and OFF becomes small, and stopping period of certain fans is shortened.

- Notes: 1) In case it is necessary to adjust the adjusting screw for differential, be sure to adjust setting first and then differential.
 - 2) After adjustment of the adjusting screws, be sure to apply the following chemical to the bolt heads to prevent them from loosening by vibration.

4.4.3 Oil pressure protection switch (63QL)

Oil pressure (difference between oil pressure and low pressure) falls due to oil pump failure, clogging and oil foaming.


This stops the compressor automatically when oil pressure continuously remains low, because the compressor may be burnt because of oil shortage.


(a) Operation

The oil pressure (pressure difference) normally rises when the compressor has started. If the pressure does not rise, power will be supplied to the heater of a timer and a bimetal operate after a preset interval, thereby stopping the compressor.

Note: Timing device is affected by ambient temperature and its set period differs with ambient temperature. (Standard temperature 25°C) Ambient temperature Set period

Higher Shorter Lower Longer

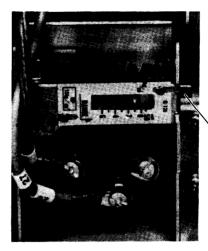
Electric wiring in oil pressure protection switch

(b) Resetting

If 63QL has operated, depress the reset button several minutes after when the compressor stops. (The button will not be reset unless the bimetal is cold.)

(c) Adjustment method

Adjust the oil pressure protection switch by turning the adjusting gear as described below.


J J	
Adjusting points	for oil pressure protection switch

Adjusting gear	Turning direction		Function
Adjusting	Clockwise	$\mathbf{\mathfrak{P}}$	Functional pressure (differential) becomes low and heater circuit is disconnected with low pressure difference.
gear for settings	Counter- clockwise		Functional pressure (differential) becomes high and heater circuit is disconnected with high pressure difference.

Note: The following turning directions are viewed from the low pressure connection side.

4.4.4 Water pressure switch (63W)

This switches over air and water cooled modes. If cooling water flows and water pressure rises above a preset water pressure at the inlet, the contact is turned off to stop the condenser fan motor and water cooled operation will start.

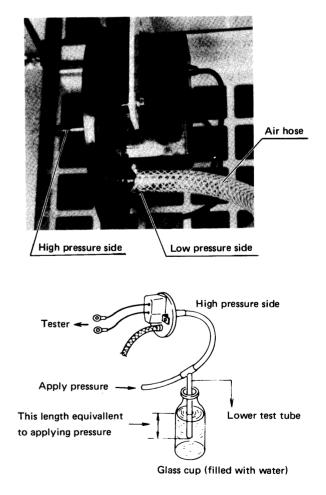
Adjusting screw for setting

(a) Adjusting method

Turn the adjusting screw as stated below.

Adjusting screw	Tur	ning direction	Function
Adjusting screw for	Clockwise		Setting (OFF value) becomes low, and fans stops quicker
setting	Counter- clockwise		Setting (OFF value) becomes high, and fan is delayed in stopping.

Adjusting points of water pressure switch

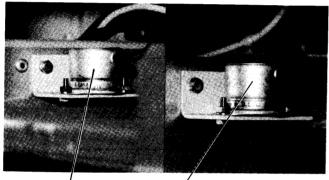

Note: After the adjustment, be sure to apply loctite to the bolt head to prevent it from being loosened due to operation vibration.

4.4.5 Air pressure switch (63DA)

If the evaporator is frosted, difference of the air pressures at the inlet and outlet of the evaporator becomes large. If the pressure difference rises above a preset value, the air pressure switch operates and defrosting will start.

(a) Checking operating value

- Set the checker device as shown on the right.
- Applying pressure to the high pressure side, lower the test tube slowly. (At this time, small bubbles must come out at the bottom of the tube.)
- Read the length of H (length of the tube which is below the water surface) when the tester indicates continuity. The operating point of the air pressure switch is the value of H plus 5 mmH₂O.Check this value a few times.
- To apply pressure, you may blow air into the tube. Alternative methods use a pump, APS tester, or manometer.

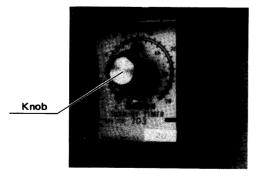

4.4.6 Defrost termination thermostat (23D)

This senses ambient temperature around the thermostat and will terminate defrosting.

4.4.7 Firestat (26AH)

This prevents the electric heaters from overheating. If the heaters are overheating, the ambient temperature around the thermostat rises and the thermostat cuts off the heaters. $OFF: 71^{\circ}C$

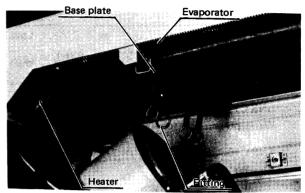
ON : 49°C

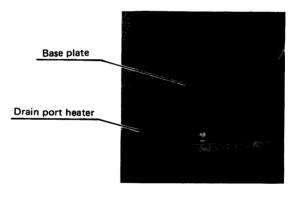


Defrost termination thermostat Firestat

4.4.8 Defrost timer (2D₁)

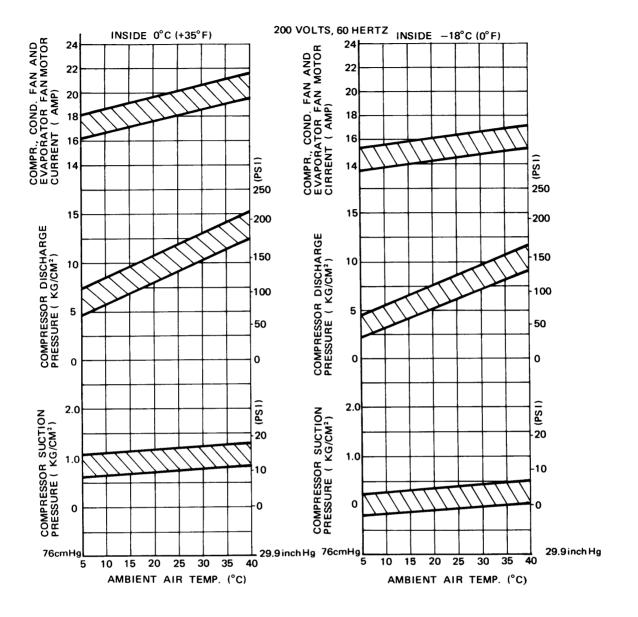
The defrost timer activates defrosting operation automatically at preset intervals. The timer setting is controlled by a knob on its front face. Do not adjust it while operating.


- Adjustable range : 6~24 hours (60 Hz), 7 ¹/₈ ~28½ hours (50 Hz).
- Once power has been turned off, the timer is reset to the initial state.
- NOTE) The refrigeration unit should not be used for pulling down the temperature of cargoes or freezing them. The unit has insufficient capacity for such purpose. All cargoes should be loaded into container pre-cooled.


4.4.9 Electric heaters

Two kinds of electric heaters are used.

(a) Sheathed heaters (220V AC, 0.65 kW x 6)
 These are fitted at the bottom of the evaporator.
 H₁ through H₆ are used for defrosting. H₁ and H₂ are used as auxiliary heaters during heating operation.
 To replace them, lift the fittings up and remove them together with the base plate.


(b) Molded heaters (220V AC, 12W \times 2) These are fitted at the left and right of the drain pan to prevent the drain port from freezing (H₇ and H₈).

5. Set values of functional parts

Part name	Mark	Function	n	Set value
Oil pressure protection switch ONS-C106Q	63QL	Heater circuit OF ON Timer		1.0kg/cm ² 0.5kg/cm ² 110 seconds (ambient temperature 25°C) More than 5 seconds (ambient temperature 70°C)
Dual pressure switch DNS-D306Q	63HL	Low pressure OF ON High pressure OF ON	F	40cmHgV 0.2kg/cm ² 20kg/cm ² 16.5kg/cm ²
High pressure control switch SNS-C130Q11	63CL	OF ON	-	7kg/cm ² 12.5kg/cm ²
Water pressure switch SNS-C106Q6	63W	OF ON	-	1.0kg/cm ² 0.4kg/cm ²
Firestat KLIXON 20420L/L160-4	26AH	OF ON	-	71°C (160°F) 49°C (120°F)
Defrost Termination thermostat KLIXON 20420L/L45-1	23D	OF ON	-	7.2°C (45°F) 1.67°C (35°F)
Defrost timer STP-103	2D	ON	J	24h (60Hz) 28 1/2 (50Hz)
Air switch SDS-K102	63DA	0	N	20mmH ₂ O
Overcurrent relay CR-20-NP ₂ S ₄	51C	OF	F	10.0A
Circuit breaker (main circuit) MK-53	52C1	OF	F	32A
Circuit breaker (control circuit) CP 31	52C ₂	OF	F	7A
Thermal protector KLIXON 9700L-01-11 (cond. fan motor) 9700K-01-11 (evap. fan motor) KLIXON	49	OF		120°C (248°F) 105°C (221°F)

6. Operating pressure and running current

< For reference >

		Item	Unit	Value	
1		 during defrosting mary side of 88H₂ 	A	10.5 (AC 220V)	
2	Running curren	t of condenser fan motor	A	0.7 (AC 220V)	
3	Running curren	t of evaporator fan motor	A	3.0 (AC 220V)	
4		Compressor		240 ± 20/17.3 ± 1.4	
		Compressor stop valve flange		140 ± 15/10.1 ± 1.1	
	Bolt tightening	Fan motor	kg•cm/ _{ID•} Ft	70 ± 7/5.0 ± 0.5	
	torque	Solenoid valve		75 ± 5/5.4 ± 0.4	
		Expansion valve		140 ± 10/10.1 ± 0.7	
	Ĩ	Fan		30 ± 1/2.17 ± 0.07	

7. Troubles and countermeasures

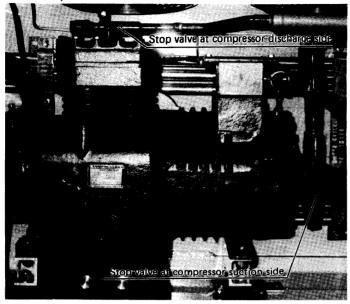
If the unit does not work properly, inspect it in accordance with "Troubles and countermeasures" to find cause of trouble and repair it.

State	Phe	nomena	Fu	unctioning places	Cause	Countermeasures
	A :	Condenser	a.	No trouble with unit	Current interruption	Trace cause
		evaporator fans and compressor			Power source is disconnected.	Connect power source plug to power source.
5		are inoperative.		Circuit breaker function (main circuit)	over current.	Trace causes and replace.
			C.	Circuit breaker function (control circuit)	It functions due to over current.	Trace causes and replace.
I. Operation inoperative	В:	Evaporator fans operate but condenser fans and compressor	a.	No trouble with unit	The unit halts by function of the temperature recording controller or in heating operation.	
<u>.</u>		are inoperative.	_		Setpoint selector is high	Readjust temp. setting as designed.
			b.	Oil pressure control	It is not reset yet.	Repair trouble and push down reset button.
			c.	Solenoid valve does not function.	Coil is cut out.	Replace it.
			d.	Controller malfunctions.	Sensor is damaged or other reasons.	Replace it.
	A:	and compressor stop, keeping		Oil pressure protection switch is functioning.	Oil pressure will not rise. Oil is short or oil pump is out of order.	Additional oil charge, or repair oil pump.
		evaporator fans in operation.	b.	No trouble with unit	Controller functions and stops unit.	
	В:	Condenser fans and compressor operate on and off repeatedly with evaporator fans in operation.	r functions. High pressure side - r	functions.	Excessive charge of refrigerant.	Discharge refrigerant.
				Air in system	Air purge	
				Insufficient air flow for air cooled operation.		
				Condenser or passage clogged.	Clean or remove obstacles	
-					Fan blade damaged.	Repair or replace.
					Fan motor does not rotate.	
stol			-		Capacitor inoperative.	Replace it.
ration				Fan motor thermostat has functioned.	Trace causes.	
II. Operation stops so					Insufficient water volume for cooling operation.	
-					Condenser is clogged with scale.	
			Lo	wer pressure side	Insufficient refrigerant charge.	Additional charge, seek leaking positions and repair.
					Dryer clogging	Replace
					Moisture chokes	Exchange dryer.
					Gas leakage from feeler tube of expansions valve.	Exchange it.
			b.	Over-current relay or compressor protection thermostat has functioned.	Excessive large current due to over-load operation.	Trace causes.

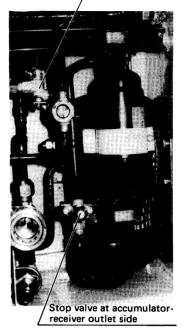
State	Phe	enomena	Functioning places	Cause	Countermeasures
	A :	Compressor inoperative.	a. Solenoid valve will not close.	Blocked with dust.	Replace it.
Inside temp. is low than temperature setting			b. Controller does not function.	Sensor is disconnected	Replace it.
Inside temp is low than temperatur setting			c. Sensor is installed wrongly.		Reattach it.
Ē	B :	Hotgas bypass	Modulating	Blocked with dust	Repair or replace
		does not work	control valve does not open	Controller is defective	Replace transistor or controller
rop	A :	Inside temperature	a. Modulating control valve does not close.		
IV. Inside temperature does not drop		does not reach to preset temperature (Fans and compressor woo	b. Capillary tube is defective	Blocked with dust	Repair or replace
V. Inside temperature is not stable	Α:	Inside temp- erature is not stable during chilled and heating opera- tions (Fans and com- pressor work properly)	a. Opening of modulating control valve (valve control valtage Y ₁) is not stable	Controller is improperly adjusted	Adjust or replace
Heating	A:	Heater is inoperative.	a. No trouble with unit	Setting of setpoint selector is under -5.0°C	
Ч. Н			b. Firestat	Insufficient evaporator air volume	
VII. Defrosting operation		Defrosting and refrigerating operation are repeated in a short period of time.	a. Defrost timer incorrectry set or faulty.	Improper adjustment	Readjustment

8. PTI (Pre Trip Inspection)

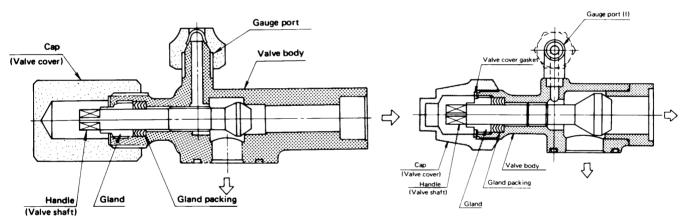
To keep the unit in good operating condition, check adjust or repair the unit when necessary. The following is the checking items of PTI (an example of container refrigeration unit checklist).


Container refrigeration unit inspection card

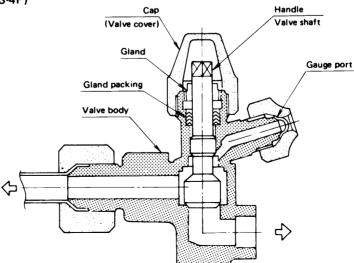
	Installed ship name				Date of Inspection			
Container No.					Place of Inspection			
Loaded cargo Loaded or none Customer's staff					Unit Model No.			
					Unit No.			
	Service			Check point	Compressor No. Check method	Defense and the		
	Check	NO.	External appearance	e of importants parts of container		Reference value		
_		1	(doors, equipment	mount, damaged points)	Visual			
	-	2	-	nd exterior of container	Visual			
		3	Checking the smud (air-cooled condens	-	Visual			
ĺ		4	Checking "through	" points inside and outside unit	Visual			
		5	The refrigeration ci	rcuit for leakage of gas and	Halide torch,	Flame reaction should be bluish		
		5	oil (mainly at joint	s)	Visual	purple		
		6	Checking external a and plug	appearance of power cable	Visual			
		7	Cleaning drain hose	•	Visual	Shall be free from clogging		
tion		8	Mounted condition	of electric heaters	Visual	Make sure that leads are not in contact with heaters		
era		9	Checking exterior of	of firestat	Visual	Shall have no damaged part		
Check before operation		10		n of cable glands and monitoring	Retighten with tool	Make sure that they are firmly tightened		
ck bet		11	Bolts for compress for fastening state	or, fans, and motors, etc.	Retighten with tool	Make sure that they are firmly tightened		
-S		12	Clearance between	fan and fan guide	Visual	Eraporator fan : 5~9 mm Condenser fan : 3~7 mm		
		13	Sealing at control b	box, and PS box, etc.	Visual	Packing and sealing should be intact		
		14	Wire terminals for	oosening correction	Visual, driver			
_		15	Contact and/or coi burning	l of magnetic contactor for	Visual			
		Unit insulation	Compressor circuit					
		16	resistance	Electric heater circuit MΩ	DC 500V megger	$2M\Omega$ or more		
				Evaporator fan circuitMΩ				
	17 Checking operation of		Checking operation	n of oil CUT OUT [] kg/cm²	Tension gauge	1.0 kg/cm ² 110 seconds		
			pressure protection	switch CUT IN kg/cm ²	Timer	0.5 kg/cm ² (25°C)		
		18	Supply voltage		Check line voltage at primary si- de of circuit breaker (main circuit)	Within ±10% of related voltage		
		19	Checking condense for vibration and n	r and evaporator fan motors oise	Touch and listen			
		20	Checking amount of	of circulating refrigerant	Check liquid indicator	Make sure that it is sealed		
ç		21	Checking for water	in refrigerant	Check liquid indicator	Deep blue		
Check during operation		22	Checking compress condition)	or oil level (operating	Check compressor oil level gauge	— (oil level 1/4 – 3/4)		
do l		23		of the recorder and the battery	Visual			
rinç		24		of controller and pilot lamps	Check instrument			
- P		25		efrosting operation				
ec k			Electric heater		Manual defrost switch			
ຽ		26	operation and curre		Clamp meter			
		27	thermostat (Compl		Mount thermistor to termination thermostat mounting position OFF 7.2±1.7°C			
		28	Unit operating curr	ent R S T	Clamp meter -18	°C V Hz		


	Check	No.	C	heck point	Check method	Reference value	
		29	Checking	H–CUT OUT kg/cm²	Blind air inlet	20 kg/cm²	
		29	 operation of dual pressure switch 	LCUT OUT mm HgV	Accomplish pump down by use of the stop valve at the	400 mmHgV	
				L-CUT IN kg/cm ²	accumulator receiver outlet	0.2 kg/cm ²	
			Checking operation of water pressure	Checking switchover from water-cooled to air-cooled operation	Disconnect water coupling	Condenser fan motor shall operate	
ration		30	switch	Checking switchover from air-cooled to water-cooled operation	Connect water coupling and supply water	Condenser fan motor shall stop	
Check during operation		31	Checking voltage	Checking 400V class operation	Place voltage selector lever upward		
dur			selector	Checking 200V class operation	Place voltage selector lever downward		
Check			Inside °C	0°C	–18°C	Automatic operation at -18°C	
			Ambient °C			in one cycle	
		32	LP kg/cm ²				
			HP kg/cm ²				
				Operating time opera	tion	Operation –18°C Hr M	Automatic Hr operation at -18°C M
				Operation starting time			
_		33	Checking automatic defrosting	Defrost time M			
Check after operation		34	Place new chart				
Check after peratio		35	Close caps for contro	l box and PS box, etc.			
O ~ e		36	Write down details of	f service on history cards			

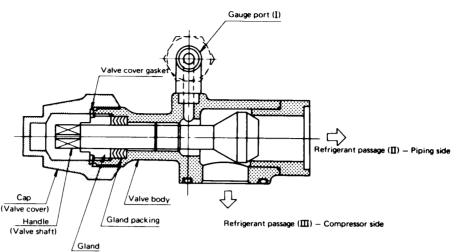
9. How to maintenance


- 9.1 Handling method of the stop valve
- (1) Place of the stop valve and its kind

 (2) Structure of stop valve
 1 Stop valve at compressor discharge side (VSH10VAP-5S) Stop valve at hot gas bypass



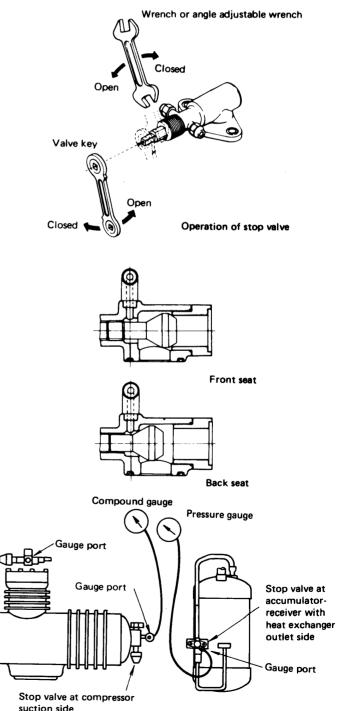
2 Stop valve at compressor suction side (VSH22XBP)



3. Stop valve at accumulator-receiver with heat exchanger outlet side

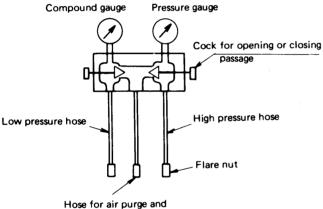
Stop valve at hot gas bypass (VSV10CBP-4S-4F)

(3) Handling method

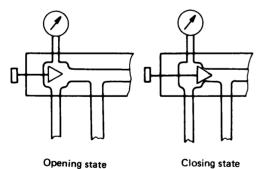

- 1) Remove the valve cap. At this time, be careful not to lose the gasket.
- 2) Loosen the gland in a way the refrigerant is not extracted.

3) Fully close the handle	The refrigerant passage
	I is connected to III
	(Front seat)
4) Fully release the handle	The refrigerant passage
	II is connected to III
	(Back seat)

- 6) The refrigerant passage differs with the procedure mentioned in 3, 4, or 5. So select the best passage by necessity.
- 7) Operate the handle, tighten the gland and place the valve cap as it was after completion of the work. At this time, do not forget to attach the gasket.
- 9.2 Attaching or removing points of pressure gauge


(1) Attaching a general pressure gauge

- 1) After opening the compressor suction valve and the accumulator-receiver valve fully (back seat), connect a pipe to the gauge port.
- Loosen a little the flare nut on the pressure gauge side and tighten the handle of the stop valve a little (Middle seat) and return it at once. Thus the air is purged.
- 3) After purging the air, accurately tighten up the flare nut on the pressure gauge side.
- 4) Close the handle of the stop valve a little, and confirm that the needle of the gauge rises.
- 5) Be certain that the needle of the pressure gauge does not oscillate during the operation of the unit. If it oscillates, do not close the gauge port fully and open the handle of the stop valve a little.
- 6) In case the pressure gauge is attached to the low pressure side, if the low pressure is lower than the atmospheric pressure, the air is drawn in the piping during the air purging. So install the pressure gauge after confirming that low pressure is higher than the atmospheric pressure.
- 7) Operate the unit and confirm that the unit is stopped without pump down.


(2) Attaching the gauge manifold

- 1) With regard to mounting points, note the same caution as that for general pressure gauges.
- 2) Open the cocks which are attached to the both sides of the gauge manifold when mounting. Loosen the blind cover of the centre hose, and close the gauge port for the compressor suction valve and the accumulatorreceiver outlet valve. (Back seat)
- Attach the flare nut of the hose of the manifold on the high pressure side tightly and the on the low pressure side loosely.
- 4) Loosen the accumulator-receiver outlet valve and vent the air from the hose on the low pressure side and the centre hose and then once again keep the stop valve in the back seat state. After that tighten up the flare nut on the low pressure side.
- 5) After closing the cocks of the gauge manifold, keep the cock of the compressor suction valve and accumulatorreceiver outlet valve at the neutral seat and measure pressure.

Hose for air purge and refrigerant charge

Structure of gauge manifold

Opening and closing states of gauge manifold

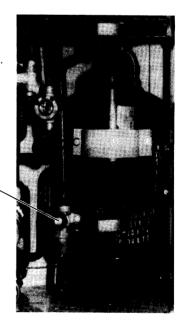
(3) Removing the pressure gauge and the gauge manifold, as stated below.

When the high pressure hose is removed, note that the liquid refrigerant in the hose may jet out, which is very dangerous.

- 1) Hold the handle of the stop valve in the back seat state, and close the gauge port.
- 2) Open the cock (in care of gauge manifolds) or the flare nuts (in case of general pressure gauges) a little to extract the refrigerant from the hose.

At this time, do not open it suddenly so as not to joint out liquid refrigerant.

- 3) After extracting the refrigerant from the hose, remove the pipe connection for the gauge piping.
- 4) Place the blind cover on the gauge port of the stop valve, accurately tighten up the flare nut and confirm no refrigerant leaks.
- Note: Since the blind cover is very small, be careful not to loose it.


9.3 Pump down

Pump down means that the refrigerant in the refrigeration circuit is liquidized and collected in the Accumulator-receiver with heat exchanger. This work is required to repair the refrigeration circuit for minimizing leaking volume of the refrigerant and risks due to pressure rising.

< Working procedure >

- 1) Install pressure gauges to the high pressure side the low pressure side.
- 2) Operate the refrigeration unit (either on water cooled or air cooled operation)
- 3) Close the accumulator-receiver outlet valve.
- Stop the operation when reading of the low pressure gauge becomes o.1 kg/cm² and close the compressor discharge valve.
- 5) After a short while, read the low pressure gauge. If pressure rises, open the compressor discharge valve and repeat the same procedure.
- 6) Repeat the same procedure two or three times, and the refrigerant is collected in the accumulator-receiver with heat exchanger. If no pressure gauge is attached, the unit is stopped by the low pressure setting of the dual pressure switch.

Stop valve at accumulatorreceiver outlet side

9.4 Charging and purging the refrigerant

(1) Purging non-condensable gas

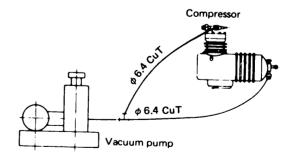
If non-condensable gas such as air exsits in the refrigeration circuit, it is collected by the accumulator-receiver with heat exchanger, which raise pressure in the accumulator-receiver with heat exchanger abnormally high and reduces heat transferring ratio of the condenser surface. It is, therefore, very important to extract non-condensable gas. If discharge pressure is abnormally high (even though cooling water volume is increased, in case of water cooled operation) and will not return to the normal pressure, inspect if non-condensable gas such as air exsists in the following method.

- Stop the compressor, close the accumulator-receiver oultet valve and wait until leaving and entering cooling air (or water) of the air (water) cooled condenser become equal. If there is any difference between saturated pressure corresponding to cooling air (water) and condensing pressure, non-condensable gas exists. In this case, purge non-condensable gas as stated below.
- 1) Accomplish pump down
- 2) Condense the refrigerant as much as possible, and then discharge it from the gauge port of the compressor discharge valve.
- 3) Discharge the condensed refrigerant repeatedly reading the pressure gauge until condensing pressure becomes saturated pressure.

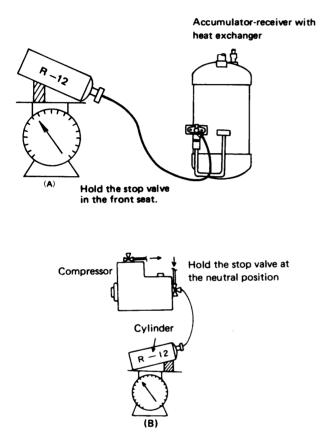
(2) Refrigerant purge

There are two methods of refrigerant purge; i.e. one is for collecting the refrigerant extracted in a cylinder and the other is for discharging it to the atomosphere.

- (a) Collecting the refrigerant in a cylinder
- 1) Prepare an empty cylinder which has been dried by forming vacuum inside and weigh it.
- 2) The cylinder is connected to the gauge port of the Accumu-receiver with heat exchanger by piping with the cylinder cock closed, and then loosen the flare nut on the cylinder side a little to vent the air from the piping.
- 3) Operate the refrigeration unit to pump down the refrigerant.
- 4) After completion of pump down, open the gauge port of the accumulator-receiver with heat exchanger and then open the cock of the cylinder to collect the liquid refrigerant into the cylinder.
- 5) After collecting the refrigerant, close the gauge port and the cock and then remove the piping.
- 6) Be certain that the refrigerant has been collected in the cylinder by weighing it.
- 7) As for the refrigerant remaining in the refrigeration circuit, extract it to the atmosphere.
- (b) Extracting the refrigerant to the atomosphere
- Open the gauge port on the suction side of the compressor to extract the gaseous refrigerant to the atmosphere.
- 2) Do not open the compressor discharge valve or the gauge port of the accumulator-receiver with heat

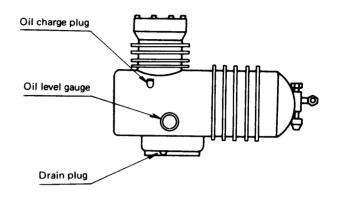

exchanger, otherwise the refrigerant oil and the liquid refrigerant are discharged, which may result in shortage of oil or getting chillblains.

- 3) Do not extract the refrigerant in a closed room and also confirm there is no fire around it. Although the refrigerant is non-toxic, there may be fear of suffocation. In addition, if the refrigerant contacts with fire, it yields phosgene gas (toxic gas).
- (3) Vacuum drying and charging refrigerant and refrigeration oil


If all the refrigerant has leaked out and the air is intermixed in the refrigeration circuit, repair a cause of trouble and do vacuum drying. Then charge the predesigned volume of refrigerant. In case the refrigerant oil is replaced, do the same. (Required tools)

or gauge manifold

- 1. Refrigerant cylinder (20 kg) for R-12 (CCl₂ F_2) with mouth piece
- 2. Refrigeration oil (20% can) SUNISO 3GS-DI)
- 3. ϕ 6.4 CuT (with two flare nuts)
- Pressure gauge (20 kg/cm²), compound gauge (10 kg/cm² x 75 cmHg)
- 5. Weighing scale (Up to 50 kg)
- 6. Tools
- 7. Vaccum pump
- (a) In case the refrigerant is replenished without exchanging the refrigeration oil.
- Connect the vacuum pump to the gauge ports of the compressor suction and discharge valves, form vacuum down to 76 cmHg, hold the stop valve in the back seat state and then remove the vaccum pump, leaving the vacuum state in the refrigeration circuit. However, when air enters in the refrigeration circuit, form the vaccum in the circuit down to 76 cmHg and leave it for more than 2 hours (vaccum drying).



2) To evacuate the refrigeration circuit between the solenoid valve and expansion valve, reduce pressure of the circuit below the preset level of the low pressure switch lower the presetting level of the set point selector, operate the refrigeration unit, and open the solenoid valve for evacuation. At this time (vacuum drying), the compressor remains idle since the low pressure switch is off, and the solenoid valve alone open.

- 3) Place a refrigerant cylinder on the weighting scale, and record its weight.
- 4) In case the refrigerant is charged in the liquid state, do it as shown in the above figure (A). Prevent the liquid refrigerant collected in the accumulator-receiver with heat exchanger from flowing to the low pressure side. If the refrigerant is hardly charged, operate the compressor to charge it.
- 5) In case the refrigerant is charged in the gaseous state, do it as shown in the above figure (B). If the refrigerant is hardly charged, operate the compressor to charge it.
- 6) Charge the predesigned volume of the refrigerant in the above stated methods either in 4 or 5.
- 7) After completion of refrigerant charge, hold the stop valve in the back seat state and confirm that if the predesigned volume of the refrigerant has been charged by operating the refrigeration unit.

- (b) Charging the refrigerant as well after replenishment of refrigerant oil
 - Extract the refrigerant oil. → Firstly discard all the gas so that pressure in the refrigerant circuit becomes 0. Then loosen the drain plug at the bottom of the compressor to extract all the oil. At this time, firstly open the oil charge plug and then the drain plug to prevent the oil from jetting out.

- 2) Tighten up the drain plug.
- 3) Charge the predesigned volume of the oil from the charge plug of the compressor.
- 4) Accomplish vacuum drying and refrigerant charge stated in (1).
- 5) Be sure to stop the compressor while this work is accomplished.
- 6) When the refrigeration oil is discarded, be sure to remove the oil level gauge for cleaning.
- Recommendable refrigeration oil is SUNISO 3GS-DI. SUNISO 3GS – DI is superior to SUNISO 3GS in heat resistance.
 Maker of SUNISO 3GS – DI is SUN OIL CO., LTD. (U.S.A.)
- 8) Do not mix two refrigeration oils.
- 9) Do not use oil which is left opened to the atomosphere for a long time, as it may contain water. In case oil still remains in the oil can after charging, be sure to cap it.
- (c) In case only the refrigeration oil is exchanged.
- Operate the refrigeration unit to pump down the refrigerant by use of the stop valve at the outlet of the accume-receiver with heat exchanger and stop it when low pressure becomes 0.1 kg/cm².
- 2) Tighten up the discharge valve of the compressor.
- 3) Open the gauge port on the suction side to extract the refrigerant on the low pressure side.
- 4) Charge the oil from the oil charge plug. At this time, form the vaccum gradually to hasten oil charge.
- 5) Restore the stop valve to its original state.

DAIKIN INDUSTRIES LTD

Director Branch: Shinjuku Sumitomo Bldg 6-1, 2-chome Nishi-Shinjuku Shinjuku ku Tokyo Japan

Post No. 160-91 Tel. (03) 347--8257 Telex: 32540 Cable ADDRESS: TKYDAIKINOKAY

> TR83-09 (58. 1.0025)NK